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Nonparametric Regression

e Consider model Y1,...,Y, ~ N (u(x;),0)

e Mean function represented via a Stochastic Expansion

— Z bj(xia wj)/Bj

J<J

Multivariate Gaussian Kernel g with parameters w = (x, A)

o) = (A2~ xs) = exp {5 (x =) A - x|

introduce a Lévy measure v(dg, dw)
Poisson distribution J ~ Poi(vy) wherev, = v(R x ) = [[ (8, w)dS dw

iid

B])wj | JNT((B) )OCV(Baw)
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Function Spaces

e Conditionsonv

= need to have that | 3| are absolutely summable

» finite number of large coefficients (in absolute value)

= allows an infinite number of small 3, € [—¢, €]

e satisfied if

//Rxn(l A B))v(B, w)dB dw < oo

e Mean function E[Y; | 8] = u(x;, 0) falls in some class of nonlinear functions based
on g and prioron A

= Besov Space

= Sobolov Space
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Inference via Reversible Jump MCMC

e number of support points J varies from iteration to iteration
= add a new point (birth)
= delete an existing point (death)
= combine two points (merge)
= split a point into two
e update existing point(s)

e can be much faster than shrinkage or BMA with a fixed but large J
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So far

more parsimonious than “shrinkage” priors or SVM with fixed J

e allows for increasing number of support points as n increases (adapts to
smoothness)

e no problem with non-normal data, non-negative functions or even discontinuous
functions

e credible and prediction intervals; uncertainty quantification
e robust alternative to Gaussian Process Priors
e But- hard to scale up random scales & locations as dimension of x increases

o Alternative Prior Approximation Il

http://localhost:7176/resources/slides/23-BARK.html?print-pdf=#/summary Page 5 of 19



STA 702 Fall 2023 - Lecture 23: Bayesian Adaptive Regression Kernels 11/29/23, 11:16 PM

Higher Dimensional X

MCMC is (currently) too slow in higher dimensional space to allow

e x to be completely arbitrary; restrict support to observed {x; } like in SVM (or
observed quantiles)

use a common diagonal A for all kernels

Kernels take form:

accomodates nonlinear interactions among variables

ensemble model like random forests, boosting, BART, SVM
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Approximate Lévy Prior |l

e a-Stable process: v(dB, dw) = ycq| 8]~ dB 7(dw)
e Continuous Approximation to an a-Stable process via a Student t(a, 0, e):
ve(dB, dw) = vea (8% + ae®) 248 n(dw)

e Based on the following hierarchical prior

J_J&N(O, _j*-1) & & _jGammal,)
J & ~Poi(*+) & & +_= _(,) =)

Key Idea: need to have variance/scale of coefficients decrease as .J increases
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Limiting Case

Bjlej~ N(0,1/¢;)
©; S Gamma(a/2,0)

Notes:

Require 0 < a < 2 Additional restrictions on w

Tipping’s Relevance Vector Machine corresponds to o« = 0 (improper posterior!)

Provides an extension of Generalized Ridge Priors to infinite dimensional case

Cauchy process correspondstoa = 1

Infinite dimensional analog of Cauchy priors
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Simplification with oo = 1
e Poisson number of points J ~ Poi(y/€)

e GivenJ, [ny : ny| ~ MultNom(J,1/(n + 1)) points supported at each kernel
located at x ;

o Aggregating, the regression mean function can be rewritten as

p(x) => Bibi(x,w), Bi= > B
i=0

{5 [xj=xi}

Q if @ = 1, not only is the Cauchy process infinitely divisible, the approximated Cauchy prior distributions for ﬁj are
also infinitely divisible!

B; N0, n25; 1), ;S Gamma(1/2,€%/2)

At most n non-zero coefficients!
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Inference for Normal Model

integrate out 3 for marginal likelihood £ (7, {n;}, {&:}, 0%, A)

]

n2
Y | 6% {n:},{@:i},A~N (On,a21n + bdiag (—) bT>

if n; = 0then the kernel located at x; drops out so we still need birth/death steps
via RJ-MCMC for {’I’Li, @z}

for J < mtake advantage of the Woodbury matrix identity for matrix inversion
likelihood

(A+UCcv)t=A"1-4aU(Ct+vAlU)-1vAal

update o2, A via usual MCMC
for fixed J and {n;}, can update {@;}, 0%, A) via usual MCMC (fixed dimension)
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Feature Selection in Kernel

Product structure allows interactions between variables

Many input variables may be irrelevant

Feature selection; if \; = 0 variable x4 is removed from all kernels

Allow point mass on Ay = 0 with probability p) ~ Beta(a, b) (in practice have used
a=b=1

can also constrain all A4 that are non-zero to be equal across dimensions

Binary Regression

e add latent Gaussian variable as in Albert & Chib

http://localhost:7176/resources/slides/23-BARK.html?print-pdf=#/summary Page 11 of 19



STA 702 Fall 2023 - Lecture 23: Bayesian Adaptive Regression Kernels 11/29/23, 11:16 PM

bark package

library(bark)

set.seed(42)

n = 500

circle2 = data.frame(sim circle(n, dim = 2))

plot(x.1l ~ x.2, data=circle2, col=y+l)
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Circle Data Classification
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BARK Classification

11/29/23, 11:16 PM

set.seed(42)

circle2.bark = bark(y ~ . , data = circle2,
subset = train,
testdata = circle2[-train,],
classification = TRUE,
printevery = 10000,
selection = TRUE,
common_ lambdas = TRUE)

train = sample(l:n, size = floor(n/2), rep=FALSE)

e classification = TRUE for probitregression

e selection = TRUEaIIowssomeofthe)\jto be O

e common_lambdas = TRUE sets all (non-zero) )\j toacommon A\
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Missclassification
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misscl = (circle2.bark$Syhat.test.mean > 0)
plot(x.l ~ x.2, data=circle2[-train,], pch=circle2[-train,
title(paste("Missclassification Rate", round(mean(misscl),

!= circle2[-train,
llyll ]+1

y

Missclassification Rate 0.02

1.0

x.1
0.0

-0.5
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Support Vector Machines (SVM) & BART

library(el071)

circle2.svm = svm(y ~ X.1l + x.2, data=circle2[train,],
type=llc " )

pred.svm = predict(circle2.svm, circle2[-train,])

mean(pred.svm != circle2[-train, "y"])

[1] 0.048

suppressMessages (library(BART))
circle.bart = pbart(x.train = circle2[train, 1:2],
y.train = circle2[train, "y"])
pred.bart = predict(circle.bart, circle2[-train, 1:2])
misscl.bart = mean((pred.bart$Sprob.test.mean > .5) !=
circle2[-train, "y"1])

[1] 0.036
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Data Sets n p BARK-D BARK-SE BARK-SD SVM BART
Circle 2 200 2 4.91% 1.88% 1.93% 5.03% 3.97%
Circle 5 200 5 4.70% 1.47% 1.65% 10.99%  6.51%
Circle 20 200 20 4.84% 2.09% 3.69% 44.10% 15.10%
Bank 200 6 1.25% 0.55% 0.88%  1.12%  0.50%
BC 569 30 4.02% 2.49% 6.09%  2.70%  3.36%
lonosphere 351 33 8.59% 5.78% 10.87%  5.17%  7.34%

e BARK-D: different \; for each dimension

e BARK-SE: selection and equal A\ for non-zero A4

e BARK-SD: selection and different A\ for non-zero A4
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Needs & Limitations

e NP Bayes of many flavors often does better than frequentist methods (BARK, BART,
Treed GP, more)

e Hyper-parameter specification - theory & computational approximation

e asymptotic theory (rates of convergence)

e need faster code for BARK that is easier for users (BART & TGP are great!)

e Canthese models be added to JAGS, STAN, etc instead of stand-alone R packages

o With availability of code what are caveats for users?
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Summary

Lévy Random Field Priors & LARK/BARK models:

e Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional
setting

o Adaptive bandwidth for kernel regression

o Allow flexible generating functions

e Provide sparser representations compared to SVM & RVM, with coherent Bayesian
interpretation

 Incorporation of prior knowledge if available
e Relax assumptions of equally spaced data and Gaussian likelihood
e Hierarchical Extensions

e Formulation allows one to define stochastic processes on arbitrary spaces (spheres,
manifolds)
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