1

Lecture 23: Bayesian Adaptive Regression Kernels

STA702

Merlise Clyde Duke University

[https://sta702-F23.github.io/website/](https://sta702-f23.github.io/website/)

Nonparametric Regression

- Consider model *Y*1,…, *Yn* ∼ N (*µ*(**x***i*), *σ*)
- Mean function represented via a Stochastic Expansion

$$
\mu(\mathbf{x}_i) = \sum_{j \leq J} b_j(\mathbf{x}_i, \bm{\omega}_j) \beta_j
$$

 \bullet Multivariate Gaussian Kernel g with parameters $\boldsymbol{\omega} = (\boldsymbol{\chi}, \boldsymbol{\Lambda})$

$$
b_j(\mathbf{x},\boldsymbol{\omega}_j) = g(\boldsymbol{\Lambda}_j^{1/2}(\mathbf{x}-\boldsymbol{\chi}_j)) = \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\chi}_j)^T\boldsymbol{\Lambda}_j(\mathbf{x}-\boldsymbol{\chi}_j)\right\}
$$

- **•** introduce a Lévy measure $\nu(d\beta, d\omega)$
- Poisson distribution *J* ∼ Poi(*ν*+) where *ν*⁺ ≡ *ν*(R × **Ω**) = ∬ *ν*(*β*, *ω*)*dβ dω*

$$
\beta_j, \boldsymbol{\omega}_j \mid J \stackrel{\text{iid}}{\sim} \pi(\beta, \boldsymbol{\omega}) \propto \nu(\beta, \boldsymbol{\omega})
$$

Function Spaces

- Conditions on *ν*
	- need to have that $|\beta_j|$ are absolutely summable
	- finite number of large coefficients (in absolute value)
	- \bullet allows an infinite number of small $\beta_j \in [-\epsilon, \epsilon]$
- satisfied if

$$
\iint_{\mathbb{R}\times\Omega}(1\wedge|\beta|)\nu(\beta,\boldsymbol{\omega})d\beta\,d\boldsymbol{\omega}<\infty
$$

- $\bm{\mathsf{M}}$ ean function $\bm{\mathsf{E}}[Y_i\mid \bm{\theta}]=\mu(\mathbf{x}_i,\bm{\theta})$ falls in some class of nonlinear functions based on g and prior on $\boldsymbol{\Lambda}$
	- **Besov Space**
	- **Sobolov Space**

4

Inference via Reversible Jump MCMC

- number of support points *J* varies from iteration to iteration
	- add a new point (birth)
	- delete an existing point (death)
	- combine two points (merge)
	- split a point into two
- update existing point(s)
- \bullet can be much faster than shrinkage or BMA with a fixed but large J

So far

- more parsimonious than "shrinkage" priors or SVM with fixed *J*
- allows for increasing number of support points as \overline{n} increases (adapts to smoothness)
- no problem with non-normal data, non-negative functions or even discontinuous functions
- credible and prediction intervals; uncertainty quantification
- robust alternative to Gaussian Process Priors
- But hard to scale up random scales & locations as dimension of **x** increases
- Alternative Prior Approximation II

Higher Dimensional X

MCMC is (currently) too slow in higher dimensional space to allow

- $\boldsymbol{\chi}$ to be completely arbitrary; restrict support to observed $\{{\bf x}_i\}$ like in SVM (or observed quantiles)
- use a common diagonal **Λ** for all kernels
- Kernels take form:

$$
b_j(\mathbf{x},\boldsymbol{\omega}_j) = \prod_d \exp\{-\frac{1}{2}\lambda_d(x_d-\chi_{dj})^2\}\\ \mu(\mathbf{x}) = \sum_j b_j(\mathbf{x},\boldsymbol{\omega}_j)\beta_j
$$

- accomodates nonlinear interactions among variables
- **ensemble model** like random forests, boosting, BART, SVM

Approximate Lévy Prior II

- *α*-Stable process: *ν*(*dβ*, *dω*) = *γcα*|*β*| −(*α*+1) *dβ π*(*dω*)
- Continuous Approximation to an α -Stable process via a Student $t(\alpha, 0, \epsilon)$:

 $\nu_\epsilon(d\beta, d\pmb{\omega}) = \gamma c_\alpha (\beta^2 + \alpha \epsilon^2)^{-(\alpha+1)/2} d\beta\, \pi(d\pmb{\omega})$

• Based on the following hierarchical prior

 j j & N(0, j ^{\sim}-1) & & j Gamma(,) $J < \neg Poi(\wedge + \neg) < \& \wedge + \neg = (,) = ()$

Key Idea: need to have variance/scale of coefficients decrease as *J* **increases**

Limiting Case

$$
\begin{array}{ccccc} \beta_j & \varphi_j \overset{\mathrm{ind}}{\sim} && \mathsf{N}(0,1/\varphi_j) \\ & \varphi_j \overset{\mathrm{iid}}{\sim} && \mathsf{Gamma}(\alpha/2,0) \end{array}
$$

Notes:

- Require 0 < *α* < 2 Additional restrictions on *ω*
- Tipping's **Relevance Vector Machine** corresponds to $\alpha = 0$ (improper posterior!)
- Provides an extension of **Generalized Ridge Priors** to infinite dimensional case
- Cauchy process corresponds to $\alpha = 1$
- Infinite dimensional analog of Cauchy priors

Simplification with $\alpha = 1$

- Poisson number of points *J* ∼ Poi(*γ*/*ϵ*)
- $\operatorname{\sf Given} J, [n_1:n_n] \sim \operatorname{\sf MultNom}(J, 1/(n+1))$ points supported at each kernel located at **x***j*
- Aggregating, the regression mean function can be rewritten as

$$
\mu(\mathbf{x}) = \sum_{i=0}^n \tilde{\beta}_i b_j(\mathbf{x},\boldsymbol{\omega}_i), \quad \tilde{\beta}_i = \sum_{\{j\,|\boldsymbol{\chi}_j=\mathbf{x}_i\}} \beta_j
$$

if $\alpha=1$, not only is the Cauchy process infinitely divisible, the *approximated Cauchy prior distributions* for β_j are also infinitely divisible!

$$
\tilde{\beta}_i \stackrel{\text{ind}}{\sim} \mathsf{N}(0,n_i^2 \tilde{\varphi}_i^{-1}), \qquad \tilde{\varphi}_i \stackrel{\text{iid}}{\sim} \mathsf{Gamma}(1/2,\epsilon^2/2)
$$

At most n non-zero coefficients!

Inference for Normal Model

 i ntegrate out $\tilde{\bm{\beta}}$ for marginal likelihood $\mathcal{L}(\mathcal{J}, \{n_i\}, \{\tilde{\varphi_i}\}, \sigma^2, \boldsymbol{\lambda})$

$$
\mathbf{Y} \mid \sigma^2, \{n_i\}, \{\tilde{\varphi}_i\}, \boldsymbol{\lambda} \sim \mathsf{N}\left(\mathbf{0}_n, \sigma^2 \mathbf{I}_n + \mathbf{b}\, \text{diag}\left(\frac{n_i^2}{\tilde{\varphi}_i}\right) \mathbf{b}^T\right)
$$

- if $n_i = 0$ then the kernel located at \mathbf{x}_i drops out so we still need birth/death steps via <code>RJ-MCMC</code> for $\{n_i,\tilde{\varphi}_i\}$
- for $J < n$ take advantage of the Woodbury matrix identity for matrix inversion likelihood

$$
(A+UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1}+VA^{-1}U) \!-\! 1VA^{-1}
$$

- update $\sigma^2, \boldsymbol{\lambda}$ via usual MCMC
- for fixed J and $\{n_i\}$, can update $\{\tilde{\varphi}_i\}, \sigma^2, \boldsymbol{\lambda})$ via usual MCMC (fixed dimension)

Feature Selection in Kernel

- Product structure allows interactions between variables
- Many input variables may be irrelevant
- Feature selection; if $\lambda_d = 0$ variable \mathbf{x}_d is removed from all kernels
- $\bullet \,\,$ Allow point mass on $\lambda_d=0$ with probability $p_{\lambda} \sim \mathsf{Beta}(a,b)$ (in practice have used $a = b = 1$
- $\bullet~$ can also constrain all λ_d that are non-zero to be equal across dimensions

Binary Regression

add latent Gaussian variable as in Albert & Chib

bark package

- [1](#page-11-0) library(bark)
- [2](#page-11-1) set.seed(42)
- [3](#page-11-2) $n = 500$
- [4](#page-11-3) circle2 = data.frame(sim_circle(n, dim = 2))
- [1](#page-11-4) $plot(x.1 - x.2, data=circle2, col=y+1)$

Circle Data Classification

 $x.2$

BARK Classification

```
1 set.seed(42)
2 train = sample(1:n, size = floor(n/2), rep=FALSE)
3 circle2.bark = bark(y \sim ., data = circle2,
4 subset = train,
5 testdata = circle2[-train,],
6 classification = TRUE,
7 printevery = 10000,
8 selection = TRUE,
9 common lambdas = TRUE)
```
- • classification = TRUE for probit regression
- selection = TRUE allows some of the λ_j to be 0
- common_lambdas = TRUE sets all (non-zero) λ_j to a common λ

Missclassification

- [1](#page-14-0) $misscl = (circle2.bark$yhat.test.macan > 0) != circle2[-train, "y"$
- [2](#page-14-1) plot(x.1 ~ x.2, data=circle2[-train,], pch=circle2[-train, "y"]+1,
- [3](#page-14-2) title(paste("Missclassification Rate", round(mean(misscl), 4)))

Missclassification Rate 0.02

 $x.2$

Support Vector Machines (SVM) & BART

```
1 library(e1071)
2 circle2.svm = sym(y \sim x.1 + x.2, data=circle2[train,],3 type="C")
4 pred.svm = predict(circle2.svm, circle2[-train,])
5 mean(pred.svm != circle2[-train, "y"])
```
[1] 0.048

```
1 suppressMessages(library(BART))
2 circle.bart = \frac{1}{2} pbart(x.train = circle2[train, 1:2],
3 \quad y. train = circle2[train, "y"]4 pred.bart = predict(circle.bart, circle2[-train, 1:2])
5 misscl.bart = mean((pred.bart$prob.test.mean > .5) !=
6 circle2[-train, "y"])
```
[1] 0.036

Comparisons

• BARK-D: different λ_d for each dimension

- BARK-SE: selection and equal λ_d for non-zero λ_d
- BARK-SD: selection and different λ_d for non-zero λ_d

Needs & Limitations

- NP Bayes of many flavors often does better than frequentist methods (BARK, BART, Treed GP, more)
- Hyper-parameter specification theory & computational approximation
- asymptotic theory (rates of convergence)
- need faster code for BARK that is easier for users (BART & TGP are great!)
- Can these models be added to JAGS, STAN, etc instead of stand-alone R packages
- With availability of code what are caveats for users?

Summary

Lévy Random Field Priors & LARK/BARK models:

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- Hierarchical Extensions
- Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)