1

Lecture 23: Bayesian Adaptive Regression Kernels

STA702

Merlise Clyde Duke University

https://sta702-F23.github.io/website/

Nonparametric Regression

- Consider model $Y_1,\ldots,Y_n\sim {\sf N}\left(\mu({f x}_i),\sigma
 ight)$
- Mean function represented via a Stochastic Expansion

$$\mu(\mathbf{x}_i) = \sum_{j \leq J} b_j(\mathbf{x}_i, oldsymbol{\omega}_j) eta_j$$

- Multivariate Gaussian Kernel g with parameters $oldsymbol{\omega} = (oldsymbol{\chi}, oldsymbol{\Lambda})$

$$b_j(\mathbf{x},oldsymbol{\omega}_j) = g(oldsymbol{\Lambda}_j^{1/2}(\mathbf{x}-oldsymbol{\chi}_j)) = \exp\left\{-rac{1}{2}(\mathbf{x}-oldsymbol{\chi}_j)^Toldsymbol{\Lambda}_j(\mathbf{x}-oldsymbol{\chi}_j)
ight\}$$

- introduce a Lévy measure $u(d\beta, d\boldsymbol{\omega})$
- Poisson distribution $J\sim {\sf Poi}(
 u_+)$ where $u_+\equiv
 u(\mathbb{R} imes {f \Omega})= \iint
 u(eta,{m \omega})deta\,d{m \omega}$

$$eta_j, oldsymbol{\omega}_j \mid J \stackrel{ ext{iid}}{\sim} \pi(eta, oldsymbol{\omega}) \propto
u(eta, oldsymbol{\omega})$$

Function Spaces

- Conditions on ν
 - need to have that $|\beta_j|$ are absolutely summable
 - finite number of large coefficients (in absolute value)
 - allows an infinite number of small $eta_j \in [-\epsilon,\epsilon]$
- satisfied if

$$\iint_{\mathbb{R} imes oldsymbol{\Omega}} (1 \wedge |eta|)
u(eta,oldsymbol{\omega}) deta \, doldsymbol{\omega} < \infty$$

- Mean function $\mathsf{E}[Y_i \mid \theta] = \mu(\mathbf{x}_i, \theta)$ falls in some class of nonlinear functions based on g and prior on Λ
 - Besov Space
 - Sobolov Space

Inference via Reversible Jump MCMC

- number of support points J varies from iteration to iteration
 - add a new point (birth)
 - delete an existing point (death)
 - combine two points (merge)
 - split a point into two
- update existing point(s)
- can be much faster than shrinkage or BMA with a fixed but large J

So far

- more parsimonious than "shrinkage" priors or SVM with fixed J
- allows for increasing number of support points as n increases (adapts to smoothness)
- no problem with non-normal data, non-negative functions or even discontinuous functions
- credible and prediction intervals; uncertainty quantification
- robust alternative to Gaussian Process Priors
- But hard to scale up random scales & locations as dimension of ${\bf x}$ increases
- Alternative Prior Approximation II

Higher Dimensional ${\boldsymbol{X}}$

MCMC is (currently) too slow in higher dimensional space to allow

- χ to be completely arbitrary; restrict support to observed $\{\mathbf{x}_i\}$ like in SVM (or observed quantiles)
- use a common diagonal ${f \Lambda}$ for all kernels
- Kernels take form:

$$egin{aligned} b_j(\mathbf{x},oldsymbol{\omega}_j) &= & \prod_d \exp\{-rac{1}{2}\lambda_d(x_d-\chi_{dj})^2\} \ \mu(\mathbf{x}) &= & \sum_j b_j(\mathbf{x},oldsymbol{\omega}_j)eta_j \end{aligned}$$

- accomodates nonlinear interactions among variables
- ensemble model like random forests, boosting, BART, SVM

7

Approximate Lévy Prior II

- lpha-Stable process: $u(deta,doldsymbol{\omega})=\gamma c_lpha|eta|^{-(lpha+1)}deta\,\pi(doldsymbol{\omega})$
- Continuous Approximation to an α -Stable process via a Student $t(\alpha, 0, \epsilon)$:

$$u_\epsilon(deta,doldsymbol{\omega})=\gamma c_lpha(eta^2+lpha\epsilon^2)^{-(lpha+1)/2}deta\,\pi(doldsymbol{\omega})$$

• Based on the following hierarchical prior

_j _j & N(0, _j^-1) & & _j Gamma(,) J & ~Poi(^+_) & & ^+_= _(,) = ()

) Key Idea: need to have variance/scale of coefficients decrease as J increases

Limiting Case

$$egin{array}{lll} eta_j &arphi_j &arphi_j & & \mathsf{N}(0,1/arphi_j) \ &arphi_j &\overset{ ext{iid}}{\sim} & \mathsf{Gamma}(lpha/2,0) \end{array}$$

Notes:

- Require 0 < lpha < 2 Additional restrictions on ω
- Tipping's **Relevance Vector Machine** corresponds to $\alpha = 0$ (improper posterior!)
- Provides an extension of Generalized Ridge Priors to infinite dimensional case
- Cauchy process corresponds to lpha=1
- Infinite dimensional analog of Cauchy priors

Simplification with lpha=1

- Poisson number of points $J \sim \mathsf{Poi}(\gamma/\epsilon)$
- Given $J, [n_1:n_n] \sim \mathsf{MultNom}(J, 1/(n+1))$ points supported at each kernel located at \mathbf{x}_j
- Aggregating, the regression mean function can be rewritten as

$$\mu(\mathbf{x}) = \sum_{i=0}^n ilde{eta}_i b_j(\mathbf{x},oldsymbol{\omega}_i), \quad ilde{eta}_i = \sum_{\{j \mid oldsymbol{\chi}_j = \mathbf{x}_i\}} eta_j$$

if $\alpha = 1$, not only is the Cauchy process infinitely divisible, the *approximated Cauchy prior distributions* for β_j are also infinitely divisible!

$$ilde{eta}_i \stackrel{ ext{ind}}{\sim} \mathsf{N}(0, n_i^2 ilde{arphi}_i^{-1}), \qquad ilde{arphi}_i \stackrel{ ext{iid}}{\sim} \mathsf{Gamma}(1/2, oldsymbol{\epsilon}^2/2)$$

At most *n* non-zero coefficients!

Inference for Normal Model

• integrate out $ilde{m{eta}}$ for marginal likelihood $\mathcal{L}(\mathcal{J},\{n_i\},\{ ilde{arphi_i}\},\sigma^2,m{\lambda})$

$$\mathbf{Y} \mid \sigma^2, \{n_i\}, \{\tilde{\varphi}_i\}, \boldsymbol{\lambda} \sim \mathsf{N}\left(\mathbf{0}_n, \sigma^2 \mathbf{I}_n + \mathbf{b} \operatorname{diag}\left(\frac{n_i^2}{\tilde{\varphi}_i}\right) \mathbf{b}^T\right)$$

- if $n_i = 0$ then the kernel located at \mathbf{x}_i drops out so we still need birth/death steps via RJ-MCMC for $\{n_i, \tilde{\varphi}_i\}$
- for J < n take advantage of the Woodbury matrix identity for matrix inversion likelihood

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U) - 1VA^{-1}$$

- update σ^2 , $\boldsymbol{\lambda}$ via usual MCMC
- for fixed J and $\{n_i\}$, can update $\{ ilde{arphi}_i\}, \sigma^2, oldsymbol{\lambda}\}$ via usual MCMC (fixed dimension)

Feature Selection in Kernel

- Product structure allows interactions between variables
- Many input variables may be irrelevant
- Feature selection; if $\lambda_d=0$ variable \mathbf{x}_d is removed from all kernels
- Allow point mass on $\lambda_d=0$ with probability $p_\lambda\sim {\sf Beta}(a,b)$ (in practice have used a=b=1
- can also constrain all λ_d that are non-zero to be equal across dimensions

Binary Regression

• add latent Gaussian variable as in Albert & Chib

bark package

- 1 library(bark)
- 2 set.seed(42)
- 3 n = 500
- 4 circle2 = data.frame(sim_circle(n, dim = 2))
- 1 plot(x.1 ~ x.2, data=circle2, col=y+1)

Circle Data Classification

x.2

BARK Classification

- classification = TRUE for probit regression
- selection = TRUE allows some of the λ_j to be 0
- common_lambdas = TRUE sets all (non-zero) λ_j to a common λ

Missclassification

```
1 misscl = (circle2.bark$yhat.test.mean > 0) != circle2[-train, "y"]
```

```
2 plot(x.1 ~ x.2, data=circle2[-train,], pch=circle2[-train, "y"]+1,
```

```
3 title(paste("Missclassification Rate", round(mean(misscl), 4)))
```

Missclassification Rate 0.02

X.2

Support Vector Machines (SVM) & BART

[1] 0.048

[1] 0.036

Comparisons

Data Sets	n	р	BARK-D	BARK-SE	BARK-SD	SVM	BART
Circle 2	200	2	4.91%	1.88%	1.93%	5.03%	3.97%
Circle 5	200	5	4.70%	1.47%	1.65%	10.99%	6.51%
Circle 20	200	20	4.84%	2.09%	3.69%	44.10%	15.10%
Bank	200	6	1.25%	0.55%	0.88%	1.12%	0.50%
BC	569	30	4.02%	2.49%	6.09%	2.70%	3.36%
lonosphere	351	33	8.59%	5.78%	10.87%	5.17%	7.34%

• BARK-D: different λ_d for each dimension

• BARK-SE: selection and equal λ_d for non-zero λ_d

• BARK-SD: selection and different λ_d for non-zero λ_d

Needs & Limitations

- NP Bayes of many flavors often does better than frequentist methods (BARK, BART, Treed GP, more)
- Hyper-parameter specification theory & computational approximation
- asymptotic theory (rates of convergence)
- need faster code for BARK that is easier for users (BART & TGP are great!)
- Can these models be added to JAGS, STAN, etc instead of stand-alone R packages
- With availability of code what are caveats for users?

Summary

Lévy Random Field Priors & LARK/BARK models:

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- Hierarchical Extensions
- Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)