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Nonparametric Regression
Consider model Y1, … , Yn ∼ N (µ(xi), σ)
Mean function represented via a Stochastic Expansion

µ(xi) = ∑
j≤J

bj(xi, ωj)βj

Multivariate Gaussian Kernel  with parameters g ω = (χ, Λ)

bj(x, ωj) = g(Λ1/2
j (x − χj)) = exp {−

1
2

(x − χj)T Λj(x − χj)}
introduce a Lévy measure ν(dβ, dω)
Poisson distribution  where J ∼ Poi(ν+) ν+ ≡ ν(R × Ω) = ∬ ν(β, ω)dβ dω

βj, ωj ∣ J
iid∼ π(β, ω) ∝ ν(β, ω)
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Function Spaces
Conditions on ν

need to have that  are absolutely summable|βj|

finite number of large coefficients (in absolute value)

allows an infinite number of small βj ∈ [−ϵ, ϵ]

satisfied if

∬
R×Ω

(1 ∧ |β|)ν(β, ω)dβ dω < ∞

Mean function  falls in some class of nonlinear functions based
on  and prior on 

E[Yi ∣ θ] = µ(xi, θ)
g Λ
Besov Space

Sobolov Space
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Inference via Reversible Jump MCMC
number of support points  varies from iteration to iterationJ

add a new point (birth)

delete an existing point (death)

combine two points (merge)

split a point into two

update existing point(s)

can be much faster than shrinkage or BMA with a fixed but large J
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So far
more parsimonious than “shrinkage” priors or SVM with fixed J

allows for increasing number of support points as  increases (adapts to
smoothness)

n

no problem with non-normal data, non-negative functions or even discontinuous
functions

credible and prediction intervals; uncertainty quantification

robust alternative to Gaussian Process Priors

But - hard to scale up random scales & locations as dimension of  increasesx
Alternative Prior Approximation II

5



11/29/23, 11:16 PMSTA 702 Fall 2023 - Lecture 23: Bayesian Adaptive Regression Kernels

Page 6 of 19http://localhost:7176/resources/slides/23-BARK.html?print-pdf=#/summary

Higher Dimensional 
MCMC is (currently) too slow in higher dimensional space to allow

X
 to be completely arbitrary; restrict support to observed  like in SVM (or

observed quantiles)
χ {xi}

use a common diagonal  for all kernelsΛ
Kernels take form:

bj(x, ωj) = ∏
d

exp{−
1
2

λd(xd − χdj)
2}

µ(x) = ∑
j

bj(x, ωj)βj

accomodates nonlinear interactions among variables

ensemble model like random forests, boosting, BART, SVM
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Approximate Lévy Prior II
-Stable process: α ν(dβ, dω) = γcα|β|−(α+1)dβπ(dω)

Continuous Approximation to an -Stable process via a Student :α t(α, 0, ϵ)

νϵ(dβ, dω) = γcα(β2 + αϵ2)−(α+1)/2dβπ(dω)

Based on the following hierarchical prior

_j _j & N(0, _j^-1) & & _j Gamma(, )
J & ~Poi(^+_) & & ^+_= _(, ) = ()

Key Idea: need to have variance/scale of coefficients decrease as  increasesJ
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Limiting Case
βj ∣ φj

ind∼ N(0, 1/φj)

φj
iid∼ Gamma(α/2, 0)

Notes:

Require  Additional restrictions on 0 < α < 2 ω

Tipping’s Relevance Vector Machine corresponds to  (improper posterior!)α = 0
Provides an extension of Generalized Ridge Priors to infinite dimensional case

Cauchy process corresponds to α = 1
Infinite dimensional analog of Cauchy priors
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Simplification with α = 1
Poisson number of points J ∼ Poi(γ/ϵ)
Given ,  points supported at each kernel
located at 

J [n1 : nn] ∼ MultNom(J, 1/(n + 1))
xj

Aggregating, the regression mean function can be rewritten as

µ(x) =
n∑

i=0

~
βibj(x, ωi), ~

βi = ∑
{j ∣χj=xi}

βj

if , not only is the Cauchy process infinitely divisible, the approximated Cauchy prior distributions for  are

also infinitely divisible!

At most  non-zero coefficients!

α = 1 βj

~
βi

ind∼ N(0, n2
i

~φ−1
i ), ~φi

iid∼ Gamma(1/2, ϵ2/2)

n
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Inference for Normal Model
integrate out  for marginal likelihood 

~
β L(J , {ni}, { ~φi}, σ2, λ)

Y ∣ σ2, {ni}, { ~φi}, λ ∼ N (0n, σ2In + b diag ( n2
i

~φi
)bT )

if  then the kernel located at  drops out so we still need birth/death steps
via RJ-MCMC for 

ni = 0 xi

{ni, ~φi}
for  take advantage of the Woodbury matrix identity for matrix inversion
likelihood

J < n

(A + UCV )−1 = A−1 − A−1U(C −1 + V A−1U)−1V A−1

update  via usual MCMCσ2, λ

for fixed  and , can update  via usual MCMC (fixed dimension)J {ni} { ~φi}, σ2, λ)
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Feature Selection in Kernel
Product structure allows interactions between variables

Many input variables may be irrelevant

Feature selection; if  variable  is removed from all kernelsλd = 0 xd

Allow point mass on  with probability  (in practice have usedλd = 0 pλ ∼ Beta(a, b)
a = b = 1
can also constrain all  that are non-zero to be equal across dimensionsλd

Binary Regression

add latent Gaussian variable as in Albert & Chib
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bark package
library(bark)1
set.seed(42)2
n = 5003
circle2 = data.frame(sim_circle(n, dim = 2))4

plot(x.1 ~ x.2, data=circle2, col=y+1)1
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Circle Data Classification
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BARK Classification
set.seed(42)1
train = sample(1:n, size = floor(n/2), rep=FALSE)2
circle2.bark = bark(y ~ . , data = circle2,3
                    subset = train,4
                    testdata = circle2[-train,],5
                    classification = TRUE,6
                    printevery = 10000,7
                    selection = TRUE, 8
                    common_lambdas = TRUE)9

classification = TRUE for probit regression

selection = TRUE allows some of the  to be 0λj

common_lambdas = TRUE sets all (non-zero)  to a common λj λ
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Missclassification
misscl = (circle2.bark$yhat.test.mean > 0) != circle2[-train, "y"]1
plot(x.1 ~ x.2, data=circle2[-train,], pch=circle2[-train, "y"]+1, 2
title(paste("Missclassification Rate", round(mean(misscl), 4)))3
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Support Vector Machines (SVM) & BART
library(e1071)1
circle2.svm = svm(y ~ x.1 + x.2, data=circle2[train,],2
                  type="C")3
pred.svm = predict(circle2.svm, circle2[-train,])4
mean(pred.svm != circle2[-train, "y"])5

[1] 0.048
suppressMessages(library(BART))1
circle.bart = pbart(x.train = circle2[train, 1:2],2
                    y.train = circle2[train, "y"])3
pred.bart = predict(circle.bart, circle2[-train, 1:2])4
misscl.bart = mean((pred.bart$prob.test.mean > .5) != 5
              circle2[-train, "y"])6

[1] 0.036
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Comparisons
Data Sets n p BARK-D BARK-SE BARK-SD SVM BART

Circle 2 200 2 4.91% 1.88% 1.93% 5.03% 3.97%

Circle 5 200 5 4.70% 1.47% 1.65% 10.99% 6.51%

Circle 20 200 20 4.84% 2.09% 3.69% 44.10% 15.10%

Bank 200 6 1.25% 0.55% 0.88% 1.12% 0.50%

BC 569 30 4.02% 2.49% 6.09% 2.70% 3.36%

Ionosphere 351 33 8.59% 5.78% 10.87% 5.17% 7.34%

BARK-D: different  for each dimensionλd

BARK-SE: selection and equal  for non-zero λd λd

BARK-SD: selection and different  for non-zero λd λd
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Needs & Limitations
NP Bayes of many flavors often does better than frequentist methods (BARK, BART,
Treed GP, more)

Hyper-parameter specification - theory & computational approximation

asymptotic theory (rates of convergence)

need faster code for BARK that is easier for users (BART & TGP are great!)

Can these models be added to JAGS, STAN, etc instead of stand-alone R packages

With availability of code what are caveats for users?
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Summary
Lévy Random Field Priors & LARK/BARK models:

Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional
setting

Adaptive bandwidth for kernel regression

Allow flexible generating functions

Provide sparser representations compared to SVM & RVM, with coherent Bayesian
interpretation

Incorporation of prior knowledge if available

Relax assumptions of equally spaced data and Gaussian likelihood

Hierarchical Extensions

Formulation allows one to define stochastic processes on arbitrary spaces (spheres,
manifolds)
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