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Gibbs sampling
Consider model

Y1, … , Yn ∼ N2 (θ, Σ);
θj ∼ N(0, 1)j = 1, 2.

Suppose that the covariance matrix  is known and has the formΣ

Σ = [ ]1 ρ

ρ 1

What happens when  for sampling from full conditionsals for  and ?ρ = 0.995 θ1 θ2
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Gibbs vs Stan samples
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ACF
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Hamiltonian Monte Carlo (HMC)
HMC creates transitions that efficiently explore the parameter space by using concepts
from Hamiltonian mechanics.

In Hamiltonian mechanics, a physical system is specified by positions  and
momenta .

q
p

A space defined by these coordinates is called a phase space

If the parameters of interest in a typical MCMC method are denoted as ,
then HMC introduces auxiliary momentum parameters  such that the
algorithm produces draws from the joint density:

q1, … , qK

p1, … , pK

π(q, p) = π(p|q)π(q)

marginalizing over the ’s, we recover the marginal distribution of the ’s
Therefore, if we create a Markov Chain that converges to , we have
immediate access to samples from , which is our target distribution.

pk qk

π(q, p)
π(q)
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Hamiltonian
Hamilton’s equations describe the time evolution of the system in terms of the
Hamiltonian, , which corresponds to the total energy of the system:H

H(p, q) = K(q, p) + U(q)

 represents the kinetic energy of the system and is equal to the negative
logarithm of the momentum distribution, e.g.
K(q, p)

K(p) =
pT M−1p

2
= ∑

i

p2
i

2mi

 is the Mass matrixM
 the potential energy of the system; equal to the negative logarithm of the

distribution of .
U(q)

q
Joint π(q, p) ∝ e−H(q,p) = e−K(p)e−U(q)
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Evolution
At each iteration of the sampling algorithm, HMC implementations make draws
from some distribution  and then evolves the system  to obtain the next
sample of .

π(p|q) (q, p)
q

To “evolve the system” is to move  forward in “time,” i.e. to change the values
of  according to Hamilton’s differential equations:

(q, p)
(q, p)

dp
dt

= −
∂H
∂q

= −
∂K

∂q
−

∂U

∂q
dq
dt

= +
∂H
∂p

= +
∂K

∂p

Defines a mapping  from the state at any time  to the state at Ts t t + s

“The differential change in momentum parameters  over time is governed in part
by the differential information of the density over the target parameters.”

p
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Key Properties
1. Reversibility The mapping of the state at time   to the state at  

 is one-to-one and we have an inverse  - obtained by
negating the derivatives;  MCMC updates using the dymamics don’t
modify invariant distribution!

t (p(t), q(t)) t + s
(p(t + s), q(t + s)) T−s

K(p) = K(−p)

2. Invariance/Conservation the dymamics keep the Hamiltonian invariant - if we use
the dynamics to generate proposals, the acceptance probability of MH is equal to
one if  is kept invariant!H

3. Volume Preservation/Symplectiness the mapping  of a region  to 
preserves volume means that we do not need to compute Jacobians

Ts R Ts(R)

in practice we need to use approximations to solve the PDE’s so won’t have exact
invariance etc so acceptance probability is not 1!
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Approximate Solutions to Di!erential Eqs
Discretize time into steps ϵ

Euler’s Method for th coordinatei

pi(t + ϵ) = pi(t) + ϵ
dpi

t
(t) = pi(t) − ϵ

∂U(qi(t))
∂qi

qi(t + ϵ) = qi(t) + ϵ
dqi

t
(t) = qi(t) + ϵ

∂K(pi(t))
∂pi

= qi(t) + ϵ
pi(t)
mi

Modified Euler method

pi(t + ϵ) = pi(t) − ϵ
∂U(qi(t))

∂qi

qi(t + ϵ) = qi(t) + ϵ
pi(t + ϵ)

mi
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Leapfrog
Divide into half steps

apply Modified Euler

pi(t + ϵ/2) = pi(t) −
ϵ

2
∂U(qi(t))

∂qi

qi(t + ϵ) = qi(t) + ϵ
pi(t + ϵ/2)

mi

pi(t + ϵ) = pi(t) −
ϵ

2
∂U(qi(t + ϵ))

∂qi

Preserves volume exactly

Reversible

We don’t get exact invariance (so probability of acceptance is not 1)

Step size and number of steps is still important!
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MCMC with HMC
Steps: replace  with 

theory suggests optimal acceptance rate is around 65%

q θ

1. sample a new value for the momentum p(t) ∼ N(0K, M)

2. Metropolis: from current state  simulate proposal  using
Hamiltonian dynamics by applying Leapfrog with step size  for  steps (tuning
parameters) (start with )

(q(t−1), p(t)) (q∗, p∗)
ϵ L

ϵ ∗ L = 1
3. Accept or reject acceptance probability is

. . .

min{1, exp(−H(q∗, p∗) + H(q(t−1), p(t))}
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Tuning
in addition to tuning  and , we can tune ϵ L M

 can be highly variableCov(q) = V
Consider reparameterization  so that ; Aq = q′ Cov(Aq) = AVAT = Id

A = V−1/2

eliminates posterior correlation!

general trick of reparameterizing to reduce posterior correlation is often called pre-
conditioning - improves efficiency!

use M = Id

Automatic tuning is achieved by the No-U-Turn-Sampler (NUTS) (bit complicated,
but used by STAN)

other variations Metropolis-Adjusted Langevin Algorithm (MALA)
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Hybrid Approaches
Recall mixed effects model

Yij = xT
ijβ + zT

ijγj + ϵij ϵij ∼ N(0, σ2)

random effects  (diagonal )γj ∼ Nd(0d, Ψ) Ψ

marginalize over the random effects

Yj = N(Xjβ, ZjΨZT
j + σ2Inj

)

we could use Gibbs on the conditional model, but we may get slow mixing (i.e. due to
updating variance components)

run HMC within Gibbs to update the variance components  and  using the
marginal model given 

Ψ σ2

β

HMC in its basic form doesn’t like constraints so reparameterize to use log
transformations
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Advantages & Disadvantages
HMC can produce samples with low correlation and high acceptance ratio!

can be slow with long or short tailed distributions (use local curvature in )M
driven by step size (larger time steps mean values are farther away but may lead to
lower acceptance- error is  for the leapfrog method)O(ϵ2)

number of steps (more steps reduces correlation; to avoid U turns stan uses NUTS)

most implementations limited to continuous variables (need gradients of log
densities)

need to calculate gradients (analytic or automatic differentiation methods)

can mix Gibbs (for discrete) and HMC (for continuous)

Nishimura et al (2020 Biometrika) for HMC with discrete targets

rates of convergence and other theory
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