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Normal Regression Model

Centered regression model where X € is the n x p centered design matrix where all
variables have had their means subtracted (may or may not need to be standardized)

Y=1,0+XB+e

e “Redundant” variables lead to unstable estimates

 Some variables may not be relevant at all (3; = 0)

e We want to reduce the dimension of the predictor space
e How can we infer a “good” model that uses a subset of predictors from the data?

e Expand model hierarchically to introduce another latent variable 4 that encodes
models M~ v = (1,72, ...7p)" where

’7j20<:>,3j=0
V=1 6;#0

* Find Bayes factors and posterior probabilities of models M,
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Priors

With 2P models, subjective priors for B are out of the question for moderate p and
improper priors lead to arbitrary Bayes factors leading to conventional priors on
model specific parameters

e Zellner’s g-prior and related have attractive properties as a starting point
~1 / ~1
IB’Y | a, O,y ~ N(07 g0 (Xgr X%) )

e Independent Jeffrey’s prior on common parameters (a, qb)
p(a,¢) < 1/¢

o marginal likelihood of 4 that is proportional to

n—py—1 (n—1)

p(Y[7)=C(1+g) * (1+g(1-R7) >

. R% is the usual coefficient of determination for model Mv-

e ('is aconstant common to all models (proportional to the marginal likelihood of the
null model where 8., = 0,
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Sketch for Marginal

o Integrate out B using sums of normals

e FindinverseofI,, + gPX7 (properties of projections or Sherman-Woodbury-
Morrison Theorem)

e Find determinant of ¢(I,, + gPX7)

* Integrate out intercept (normal)
e Integrate out ¢ (gamma)

e algebra to simplify quadratic forms to R?y

Orintegrate o, ,B.y and ¢ (complete the square!)
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Posterior Distributions on Parameters

alvy,¢,y~N (@n%b)

IB’)’ ‘ 77¢7gayN N ( :8’)’7 1 _|_g ; [X’)’TX’)’] 1>

n—1 TotalSS — 1+g RegSS
2’ 2

¢|v,y~camma<

TotalSS = Z(y — 9

RegSS = B;FX;FXAYB@/
2 _ RegSS _q1_ ErrorSS
7 TotalSS TotalSS
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Priors on Model Space
p(M,) < p(7)

e Fixed prior probability v; p(y; = 1) = .5 = P(M,) = .5P
e Uniform on space of models p, ~ Bin(p, .5)

e Hierarchical prior

v, | %S Ber(r)
7 ~ Beta(a, b)
then p, ~ BBp(a,b)

I'(p+ 1)T'(py + a)T'(p — py +5)T'(a +b)

p(py | p,a,b) = I'(py+ 1)I'(p — py + 1)T'(p + a + b)'(a)T'(b)

- Uniform on Model Size = p, ~ BB, (1, 1) ~ Unif(0, p)
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Posterior Probabilities of Models

e Calculate posterior distribution analytically under enumeration.

p(Y | v)p(v)
> yer P(Y [¥)p(7)

P(Mv |'Y) =

Express as a function of Bayes factors and prior odds!

Use MCMC over I - Gibbs, Metropolis Hastings if p is large (depends on Bayes
factors and prior odds)

slow convergence/poor mixing with high correlations

Metropolis Hastings algorithms more flexibility
(swap pairs of variables)

Q No need to run MCMC over v, B, @, and ¢!
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Choice of g: Bartlett's Paradox

The Bayes factor for comparing 4y to the null model:
BF(v:70) = (1+9)™ )21 4 g(1 — R2)) (" 1)/2

e For fixed sample size n and R2, consider taking values of g that go to infinity

e Increasing vagueness in prior

e What happenstoBF as g — o0?

Bartlett Paradox

Why is this a paradox?
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Information Paradox

The Bayes factor for comparing 4y to the null model:

BF(»-Y . 70) — (]_ + g)(n—l—p'y)/2(1 + g(l o R?y))—(n—l)/2

Let g be a fixed constant and take n fixed.
R?y/Pv
(1-R3)/(n—1-p,)
As R?y — 1, F' — oo Likelihood Rqtio test (F-test) would reject vy where F'is the
usual F' statistic for comparing model vy to g

Usual F statistic for testing «y versus «g is F' =

BF converges to a fixed constant (1 + g) n—1-p,/2 (does not go to infinity !

Information Inconsistency of
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Mixtures of g-priors & Information
consistency

e WantBF — ~xif R,zy — 1 if model is full rank

e Putapriorong

C [(1+g) ™ 1221+ g(1 — R2))~ "V 2x(g)dg
BF(v:v0) = c

e interchange limit and integration as R? — 1want
El(1+g)" P77

to diverge under the prior
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One Solution
e hyper-g prior (Liang et al JASA 2008)

a—2 —a/2

plg) = —5—(1+9)

org/(1+ g) ~ Beta(1,(a — 2)/2) fora > 2
e prior expectation convergesifa > n + 1 — p, (properties of o Iy function)

e Consider minimal modelp., = 1 and n = 3 (can estimate intercept, one coefficient,
and o2, then for @ > 3 integral exists

e For2 < a < Jintegral diverges and resolves the information paradox! (see proof in

)
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Examples of Priors on g

hyper-g prior (Liang et al JASA 2008)

= Special case is Jeffreys prior for g which corresponds to a = 2 (improper)

Zellner-Siow Cauchy prior 1 /g ~ Gamma(1/2,n/2)

Hyper-g/n (g/n)(1 + g/n) ~ Beta(1, (a — 2)/2) (generalized Beta distribution)
robust prior (Bayarri et al Annals of Statistics 2012)

Intrinsic prior (Womack et al JASA 2015)

All have prior tails for 3 that behave like a Cauchy distribution and all except the
Gamma prior have marginal likelihoods that can be computed using special
hypergeometric functions (2 £y, Appell F})

No fixed value of g (i.e a point mass prior) will resolve!
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US Air Example

library(BAS)
data(usair, package="HH")
poll.bma = bas.lm(log(S02) ~ temp + log(mfgfirms) +
log(popn) + wind +
precip + raindays,
data=usair,
prior="Jz2S8", #Jeffrey-Zellner-Siow
alpha=nrow(usair), # n
n.models=2"6,
modelprior = uniform(),
method="deterministic")
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Summary

summary (poll.bma,

Intercept

temp

log(mfgfirms)
log(popn)

wind
precip

raindays

BF

PostProbs

R2
dim
logmarg

P(B !=0 | Y)

O O O O o o

.00000000
.91158530
.31718916
.09223957
.29394451
.28384942
.22903262

NA
NA
NA
NA
NA
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n.models=4)

model 1
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.29410
.29860
.00000
.14406
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model 2

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.3286643
.0967000
.3775000
.0000000
.0313422

P WO OO PrOoOOoOOoODOoO KK

model 3

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.2697945
.0794000
.3714000
.0000000
.8339656

P UL oOoO O oOoOOoOrRr PP OKF KR
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model 4

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.2655873
.0781000
.5427000
.0000000
.8182487
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Plots of Coefficients

beta = coef(poll.bma)
par (mfrow=c(2,3)); plot(beta, subset=2:7,ask=F)
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Posterior Distribution with Uniform Prior
on Model Space

‘ image(poll.bma, rotate=FALSE)

Model Rank

1 2 3 4 5 6 7 8 9 10 11 13 15 17
Intercept
temp
log(mfgfirms)
log(popn)
wind
precip
raindays

3.702 2589 2392 2376 2177 2011 1.813 1614 1105  0.68 0.454

Log Posterior Odds
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Posterior Distribution with BB(1,1) Prior
on Model Space

poll.bb.bma = bas.lm(log(S02) ~ temp + log(mfgfirms) +
log(popn) + wind +
precip + raindays,

data=usair,

prior="JZs",
alpha=nrow(usair),
n.models=2"6, #enumerate
modelprior=beta.binomial(1l,1))
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Posterior Distribution with BB(1,1) Prior
on Model Space

‘ image(poll.bb.bma, rotate=FALSE)

Model Rank
1 2 3 4 5 6 7 8 9 10 12 15 19
Intercept
temp
log(mfgfirms)
log(popn)
wind
precip
raindays
4452 3.099 2563 2423 2225 221 2011 1447 0959 0499 0
Log Posterior Odds
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Summary

o Choice of prioron 3,
 g-priors or mixtures of g (sensitivity)
e priors on the models (sensitivity)

e posterior summaries - select a model or “average” over all models
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