Lecture 16: Bayesian Variable Selection and Model Averaging

STA702

Merlise Clyde Duke University

[https://sta702-F23.github.io/website/](https://sta702-f23.github.io/website/)

Normal Regression Model

Centered regression model where \mathbf{X}^c is the $n \times p$ centered design matrix where all variables have had their means subtracted (may or may not need to be standardized)

$$
\mathbf{Y} = \mathbf{1}_n \alpha + \mathbf{X}^c \boldsymbol{\beta} + \boldsymbol{\epsilon}
$$

- "Redundant" variables lead to unstable estimates
- $\bullet \,\,$ Some variables may not be relevant at all ($\beta_j = 0$)
- We want to reduce the dimension of the predictor space
- How can we infer a "good" model that uses a subset of predictors from the data?
- Expand model hierarchically to introduce another latent variable that encodes *γ* $\mathsf{models}\ \mathcal{M}_\gamma\,\boldsymbol{\gamma}=(\gamma_1,\gamma_2,\dots \gamma_p)^T$ where

$$
\begin{aligned} \gamma_j = 0 &\Leftrightarrow \beta_j = 0 \\ \gamma_j = 1 &\Leftrightarrow \beta_j \neq 0 \end{aligned}
$$

 $\bullet~$ Find Bayes factors and posterior probabilities of models \mathcal{M}_γ

Priors

With 2^p models, subjective priors for $\boldsymbol{\beta}$ are out of the question for moderate p and improper priors lead to arbitrary Bayes factors leading to **conventional priors** on model specific parameters

Zellner's g-prior and related have attractive properties as a starting point

$$
\boldsymbol{\beta}_{\gamma} \mid \alpha, \phi, \boldsymbol{\gamma} \sim \mathsf{N}(0, g\phi^{-1}(\mathbf{X}^{c}_{\boldsymbol{\gamma}}'\mathbf{X}^{c}_{\boldsymbol{\gamma}})^{-1})
$$

- Independent Jeffrey's prior on common parameters (α, ϕ) $p(\alpha, \phi) \propto 1/\phi$
- marginal likelihood of *γ* that is proportional to

$$
p(\mathbf{Y} \mid \boldsymbol{\gamma}) = C(1+g)^{\frac{n-p_{\boldsymbol{\gamma}-1}}{2}}(1+g(1-R_{\boldsymbol{\gamma}}^2))^{-\frac{(n-1)}{2}}
$$

- R_γ^2 is the usual coefficient of determination for model $\mathcal{M}_\gamma.$
- \boldsymbol{C} is a constant common to all models (proportional to the marginal likelihood of the null model where $\boldsymbol{\beta}_{\boldsymbol \gamma} = \boldsymbol 0_p$

Sketch for Marginal

- Integrate out β_{γ} using sums of normals
- Find inverse of $\mathbf{I}_n + g \mathbf{P}_{\mathbf{X}_\gamma}$ (properties of projections or Sherman-Woodbury-Morrison Theorem)
- \bullet Find determinant of $\phi(\mathbf{I}_n+ g \mathbf{P}_{\mathbf{X}_{\gamma}})$
- Integrate out intercept (normal)
- Integrate out ϕ (gamma)
- algebra to simplify quadratic forms to $R^2_{\boldsymbol\gamma}$

Or integrate α , β_{γ} and ϕ (complete the square!)

Posterior Distributions on Parameters

$$
\alpha \mid \gamma, \phi, y \sim \mathsf{N}\left(\bar{y}, \frac{1}{n\phi}\right)
$$
\n
$$
\beta_{\gamma} \mid \gamma, \phi, g, y \sim \mathsf{N}\left(\frac{g}{1+g}\hat{\beta}_{\gamma}, \frac{g}{1+g}\frac{1}{\phi}\left[\mathbf{X}_{\gamma}^{\ T}\mathbf{X}_{\gamma}\right]^{-1}\right)
$$
\n
$$
\phi \mid \gamma, y \sim \text{Gamma}\left(\frac{n-1}{2}, \frac{\text{TotalSS} - \frac{g}{1+g}\text{RegSS}}{2}\right)
$$
\n
$$
\text{TotalSS} \equiv \sum_{i} (y_{i} - \bar{y})^{2}
$$
\n
$$
\text{RegSS} \equiv \hat{\beta}_{\gamma}^{T}\mathbf{X}_{\gamma}^{T}\mathbf{X}_{\gamma}\hat{\beta}\gamma
$$
\n
$$
R_{\gamma}^{2} = \frac{\text{RegSS}}{\text{TotalSS}} = 1 - \frac{\text{ErrorSS}}{\text{TotalSS}}
$$

Priors on Model Space $p(\mathcal{M}_\gamma) \Leftrightarrow p(\boldsymbol{\gamma})$

- Fixed prior probability $\gamma_j \, p(\gamma_j=1) = .5 \Rightarrow P(\mathcal{M}_\gamma) = .5^p$
- Uniform on space of models *p^γ* ∼ Bin(*p*, .5)
- Hierarchical prior

$$
\gamma_j \mid \pi \stackrel{\text{iid}}{\sim} \text{Ber}(\pi)\\ \pi \sim \text{Beta}(a,b)\\ \text{then } p_{\bm{\gamma}} \sim \text{BB}_p(a,b)
$$

$$
p(p_{\bm{\gamma}} \mid p, a, b) = \frac{\Gamma(p+1)\Gamma(p_{\bm{\gamma}} + a)\Gamma(p - p_{\bm{\gamma}} + b)\Gamma(a + b)}{\Gamma(p_{\bm{\gamma}} + 1)\Gamma(p - p_{\bm{\gamma}} + 1)\Gamma(p + a + b)\Gamma(a)\Gamma(b)}
$$

- Uniform on Model Size ⇒ *p^γ* ∼ BB*p*(1, 1) ∼ Unif(0, *p*)

Posterior Probabilities of Models

Calculate posterior distribution analytically under enumeration.

$$
p({\cal M}_\gamma \mid \mathbf{Y}) = \frac{p(\mathbf{Y} \mid \boldsymbol{\gamma})p(\boldsymbol{\gamma})}{\sum_{\boldsymbol{\gamma}' \in \Gamma} p(\mathbf{Y} \mid \boldsymbol{\gamma}')p(\boldsymbol{\gamma}') }
$$

- Express as a function of Bayes factors and prior odds!
- Use MCMC over Γ Gibbs, Metropolis Hastings if p is large (depends on Bayes factors and prior odds)
- slow convergence/poor mixing with high correlations
- Metropolis Hastings algorithms more flexibility (swap pairs of variables)

No need to run MCMC over γ , β_{γ} , α , and ϕ !

Choice of g: Bartlett's Paradox

The Bayes factor for comparing $\boldsymbol{\gamma}$ to the null model:

$$
BF(\bm{\gamma}:\bm{\gamma}_0)=(1+g)^{(n-1-p_{\bm{\gamma}})/2}(1+g(1-R_{\bm{\gamma}}^2))^{-(n-1)/2}
$$

- For fixed sample size n and $R^2_{\boldsymbol\gamma}$, consider taking values of g that go to infinity
- Increasing vagueness in prior \bullet
- What happens to BF as $g \to \infty$?

Bartlett Paradox

Why is this a paradox?

Information Paradox

The Bayes factor for comparing *γ* to the null model:

$$
BF(\boldsymbol{\gamma}:\boldsymbol{\gamma}_0)=(1+g)^{(n-1-p_{\boldsymbol{\gamma}})/2}(1+g(1-R_{\boldsymbol{\gamma}}^2))^{-(n-1)/2}
$$

- Let *g* be a fixed constant and take *n* fixed.
- Usual F statistic for testing $\boldsymbol \gamma$ versus $\boldsymbol \gamma_0$ is $F = \frac{R_\gamma^2/p_\gamma}{(1-R^2)/(p_T)}$ $(1-R_\boldsymbol{\gamma}^2)/(n{-}1{-}p_\boldsymbol{\gamma})$
- As $R^2_{\bm{\gamma}} \to 1$, $F \to \infty$ Likelihood Rqtio test (F-test) would reject $\bm{\gamma}_0$ where F is the usual F statistic for comparing model $\boldsymbol \gamma$ to $\boldsymbol \gamma_0$
- $\bullet \,\,$ BF converges to a fixed constant $(1+g)^{n-1-p_{\gamma}/2}$ (does not go to infinity !

Information Inconsistency of [Liang et al JASA 2008](https://www.jstor.org/stable/27640050)

Mixtures of g-priors & Information consistency

- Want $\mathsf{BF} \to \infty$ if $\mathsf{R}^2_{\boldsymbol\gamma} \to 1$ if model is full rank
- Put a prior on *g*

$$
BF(\bm{\gamma}:\bm{\gamma}_0)=\frac{C\int (1+g)^{(n-1-p_{\bm{\gamma}})/2}(1+g(1-R_{\bm{\gamma}}^2))^{-(n-1)/2}\pi(g)dg}{C}
$$

interchange limit and integration as $R^2 \rightarrow 1$ want

$$
{\mathsf E}_g[(1+g)^{(n-1-p_\gamma)/2}]
$$

to diverge under the prior

One Solution

• hyper-g prior (Liang et al JASA 2008)

$$
p(g)=\frac{a-2}{2}(1+g)^{-a/2}
$$

 $\log g/(1+g) \sim Beta(1,(a-2)/2)$ for $a>2$

- prior expectation converges if $a > n+1-p_{\boldsymbol{\gamma}}$ (properties of $_2F_1$ function)
- Consider minimal model $p_{\boldsymbol \gamma} = 1$ and $n = 3$ (can estimate intercept, one coefficient, and σ^2 , then for $a>3$ integral exists
- For $2 < a \leq 3$ integral diverges and resolves the information paradox! (see proof in [Liang et al JASA 2008](https://www.jstor.org/stable/27640050))

Examples of Priors on *g*

- hyper-g prior (Liang et al JASA 2008)
	- **S** Special case is Jeffreys prior for *g* which corresponds to $a = 2$ (improper)
- Zellner-Siow Cauchy prior 1/*g* ∼ Gamma(1/2, *n*/2)
- Hyper-g/n (*g*/*n*)(1 + *g*/*n*) ∼ Beta(1,(*a* − 2)/2) (generalized Beta distribution)
- robust prior (Bayarri et al Annals of Statistics 2012)
- Intrinsic prior (Womack et al JASA 2015)

All have prior tails for $\boldsymbol{\beta}$ that behave like a Cauchy distribution and all except the Gamma prior have marginal likelihoods that can be computed using special hypergeometric functions ($\displaystyle _2F_1$, Appell F_1)

No fixed value of *g* (i.e a point mass prior) will resolve!

US Air Example

```
1 library(BAS)
2 data(usair, package="HH")
3 poll.bma = bas.lm(log(SO2) ~ temp + log(mfgfirms) +
4 log(popn) + wind +
5 precip + raindays,
6 data=usair,
7 prior="JZS", #Jeffrey-Zellner-Siow
8 alpha=nrow(usair), \# n
9 n.models=2^6,
10 modelprior = uniform(),
11 method="deterministic")
```
Summary

[1](#page-13-0) summary(poll.bma, n.models=4)

Plots of Coefficients

[1](#page-14-0) beta = $\text{coef}(\text{poll.bma})$

[2](#page-14-1) $par(mfrow=c(2,3))$; $plot(beta, subset=2:7, ask=F)$

Posterior Distribution with Uniform Prior on Model Space

[1](#page-15-0) image(poll.bma, rotate=FALSE)

Log Posterior Odds

http://localhost:4839/resources/slides/16-bma.html?print-pdf=#/summary-1 Page 16 of 19

Posterior Distribution with BB(1,1) Prior on Model Space

```
1 poll.bb.bma = bas.lm(log(SO2) ~ temp + log(mfgfirms) +
2 log(popn) + wind +
3 precip + raindays,
4 data=usair,
5 prior="JZS",
6 alpha=nrow(usair),
7 n.models=2^6, #enumerate
8 modelprior=beta.binomial(1,1))
```
Posterior Distribution with BB(1,1) Prior on Model Space

[1](#page-17-0) image(poll.bb.bma, rotate=FALSE)

Log Posterior Odds

Summary

- Choice of prior on $β_γ$
- \bullet g-priors or mixtures of g (sensitivity)
- priors on the models (sensitivity)
- posterior summaries select a model or "average" over all models