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Normal Means Model
Suppose we have normal data with Yi ∣ µi, σ2 iid∼ N(µi, σ2)

Multiple Testing  versus H0i : µi = 0 H1i : µi ≠ 0
 hypotheses that may potentially be closely related, e.g.   no difference in

expression of gene  between cases and controls, for  genes
n H01

i n

Means Model based on a “Spike & Slab” Prior:

µi ∣ τ
iid∼ π0δ0 + (1 − π0)g(µi ∣ 0, τ)

need to specify

 Probability of  or that  (spike)π0 H0i µi = 0
 “slab distribution”g

concern: is that # errors blows up with  (  = # tests = dimension of  )n n {µi}
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Approach 1: Prespecify π0
seemingly non-informative choice?
π0 = 0.5
Let

γi = {1ifH1iis true
0ifH0iis true

γ (n) = (γ1, γ2, … , γn)2 e.g.γ (n) = (0, 1, 0, 0, … , 1)T

model size  is the number of non-zero values. What does 

imply about the number of times  is true a priori?

pγ = ∑n
i=1 γi π0 = 0.5

H1i
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Induced Distribution
if  with  then pγ = ∑n

i=1 γi p(γi = 1) = 0.5 pγ ∼ Binomial(n, 1/2)

Expect 1/2 of the hypotheses to be true a priori
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Probabilities of no features or at least 1
feature?

pγ ∼ Binomial(n, 1/2)

probability of no features  or γ (n) = (0, 0, 0, … , 0)T pγ = 0

Pr(pγ = 0) = πn
0 = 0.5n

approximately  for large 0 n

Similarily, the probability of at least one feature is 1 − 0.5n ≈ 1
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Control Type I Errors
Suppose we want to fix  to protect against Type I errors blowing up as  increasesπ0 n

Pr(pγ = 0n) =
1
2

= πn
0

“Bayesian Bonferroni Prior”

leads to  very close to 1 for large ! We would need overwhelming
evidence in the data for  to not be !

π0 = 0.51/n n
Pr(H1i ∣ y(n)) ≈ 0

not a great idea to prespecify !π0
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Approach 2: Empirical Bayes
Estimate  from the data by maximizing the marginal likelihoodπ0

Yi ∣ µi, σ2 ∣ind∼ N(µi, σ2)

µi ∣ τ, π0
iid∼ π0δ0 + (1 − π0)N(µi; 0, τ)

marginal likelihood

L(π0, τ) = ∫
Rn

n

∏
i=1

N(yi; µi, σ2) {π0δ0(µi) + (1 − π0)N(µi; 0, τ)}dµ1 … dµn

=
n∏

i=1

∫
R

N(yi; µi, σ2) {π0δ0(µi) + (1 − π0)N(µi; 0, τ)}dµi

Conjugate or nice setups we can integrate out  and then maximize marginal
likelihood for  and 

µi

π0 τ

Numerical integration (lab) or EM algorithms to get  and π̂EB
0 τ̂ EB
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Expectation-Maximization ( )
Introduce latent variables so that “complete” data likelihood is nice! (no integrals!)

σ = 1

yi ∣ γi, τ
iid∼ N(0, 1)1−γiN(0, 1 + τ)γi

γi ∣ π0
iid∼ Ber(1 − π0)

Iterate: For t = 1, …

M-step: Solve for (π̂
(t)
0 , τ̂ (t)) = arg max L(π0, τ ∣ γ̂ (t−1))

E-step: find the expected values of the latent sufficient statistics given the data,  ,

 (i.e. posterior expectation)

π̂
(t)
0

τ̂ (t)

γ̂ (t) = E[γi ∣ y, π̂
(t)
0 , τ̂ (t)]

Clyde & George (2000) Silverman & Johnstone (2004) for orthogonal regression
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M-Step
log-likelihood

L(π0, τ) = ∑
i

(1 − γi) log(π0) + γi log(1 − π0)+

∑
i

(1 − γi)N(yi; 0, 1) + γiN(yi; 0, 1 + τ)

plug in  above and maximize wrt  and γ̂
(t)
i π0 τ

π̂
(t)
0 = 1 − ∑i γ̂

(t)
i

n

τ̂ (t) = max{0,
∑i γ̂

(t)
i y2

i

∑i γ̂
(t)
i

− 1}
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E-Step
Posterior distribution for γi ∣ yi, τ̂, π̂

γi ∣ yi, τ̂, π̂0
iid∼ Ber(ωi)

 with posterior odds ωi = Oi

1+Oi
Oi

Oi =
1 − π̂

(t)
0

π̂
(t)
0

× BF10

BF10 =
p(y ∣ γi = 1, τ̂ (t))

p(y ∣ γi = 0)
=

1
(1 + τ̂ (t))1/2

e
1
2 y2

i
τ̂ (t)

1+τ̂
(t)
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Adding Noise
What happens to  if have all noise?π̂EB

0

 as  (here ) (  ) so

distribution collapses to the same as the noise model

τ̂ → 0 n → ∞ n = 10000 τ̂ (t) = max{0,
∑i γ̂

(t)
i y2

i

∑i γ̂
(t)
i

− 1}

 so BF10 → 1 π̂
(t)
0 = π̂

(0)
0

 gets stuck at initial value of !π̂EB
0 π0

posterior probability of  not consistent as well as H1i π0

similar problems with convergence to a local mode with even with more features
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Approach 3: Fully Bayes
Choose a prior for  (and ), simplest case π0 τ π0 ∼ Beta(a, b)

Consider the thought experiment where we don’t know the first hypothesis but we
know that the others are all null  for γj = 0 j = 2, … , n

γ (n) = (?, 0, , … , 0)T

γi ∼ Bernoulli(1 − π0)
Update the prior for  to include the info  for π0 γj = 0 j = 2, … , n

π(π0 ∣ γ2, … , γn) ∝ πa−1
0 (1 − π0)b−1

n∏
j=2

π
1−γj

0 (1 − π0)γj

π(π0 ∣ γ2, … , γn) ∝ πa+n−1−1
0 (1 − π0)b−1
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Beta Posterior
Posterior  with meanπ0 ∣ γ2, … , γn ∼ Beta(a + n - 1, b)

E[π0 ∣ γ2, … , γn] =
a + n − 1

a + n − 1 + b

suppose  (Uniform prior)a = b = 1

E[π0 ∣ γ2, … , γn] =
n

n + 1

implies probability of  and  as  borrowing strength from
other nulls

H01 → 1 H11 → 0 n → ∞

Multiplicity adjustment as in the EB case

Scott & Berger (2006 JSPI, 2010 AoS) show that above framework protects against
increasing Type I errors with ; We also get FDR control automaticallyn
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Induced Prior on 

If  and 

pγ

Exercise for the Energetic Student:

pγ ∣ π0 ∼ Binomial(n, 1 − π0) π0 ∼ Beta(1, 1)

What is the probability that pγ = 0

What is the probability that pγ = n

What is the distribution of  ?pγ

This is a Beta-Binomial distribution!

special case  this is a discrete uniform on model size!a = b = 1

Bottomline: We need to “learn” key parameters in our hierarchical prior or the magic
doesn’t work! Borrowing comes through using all the data to inform about “global”
parameters in the prior, in this case  (and )!π0 τ
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Posteriors, Inference and Decisions
Posterior distribution of  is a spike at 0 and continous distributionµi

Joint posterior distribution of  averaged over hypotheses “Model
averaging”

µ1, … , µn

select a hypothesis

Report posterior (summaries) conditional on a hypothesis

Issue is the winner’s curse !

Need to have coherent conditional inference given that you selected a hypothesis.

Don’t report selected hypotheses but report results under model averaging!
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Choice of Slab
µi

iid∼ π0δ0 + (1 − π0)g(µi ∣ 0, τ, Hi1)

growing literature on posterior contraction in high dimensional settings as 
with “sparse signals”

n → ∞

posterior π(µ(n)) ∣ y(n))
Want

Pr(µ(n) ∈ Nϵn
(µ

(n)
0 ) ∣ y(n)) → 1

assume that there are  features (fixed or growing slowly)s

feature values are bounded away from zero

Want the posterior under the Spike and Slab prior to concentrate on this
neighborhood (ie. probability 1 )

active area of research!
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