1

Lecture 15: Bayesian Multiple Testing

STA702

Merlise Clyde Duke University

https://sta702-F23.github.io/website/

Normal Means Model

Suppose we have normal data with $Y_i \mid \mu_i, \sigma^2 \stackrel{iid}{\sim} \mathsf{N}(\mu_i, \sigma^2)$

- Multiple Testing $H_{0i}: \mu_i = 0$ versus $H_{1i}: \mu_i
 eq 0$
- n hypotheses that may potentially be closely related, e.g. H_{01} no difference in expression of gene i between cases and controls, for n genes
- Means Model based on a "Spike & Slab" Prior:

$$\mu_i \mid au \stackrel{iid}{\sim} \pi_0 \delta_0 + (1-\pi_0) g(\mu_i \mid 0, au)$$

- need to specify
- π_0 Probability of H_{0i} or that $\mu_i=0$ (spike)
- g"slab distribution"
- concern: is that # errors blows up with n (n = # tests = dimension of $\{\mu_i\}$)

Approach 1: Prespecify π_0

- seemingly non-informative choice? $\pi_0=0.5$
- Let

$$\gamma_i = egin{cases} 1 ext{ if } H_{1i} ext{ is true} \ 0 ext{ if } H_{0i} ext{ is true} \end{cases}$$

$$\gamma^{(n)} = (\gamma_1, \gamma_2, \dots, \gamma_n)^2$$
 e.g. $\gamma^{(n)} = (0, 1, 0, 0, \dots, 1)^T$

• model size $p_{\gamma} = \sum_{i=1}^{n} \gamma_i$ is the number of non-zero values. What does $\pi_0 = 0.5$ imply about the number of times H_{1i} is true *a priori*?

Induced Distribution

if $p_\gamma = \sum_{i=1}^n \gamma_i$ with $p(\gamma_i = 1) = 0.5$ then $p_\gamma \sim \mathsf{Binomial}(\mathsf{n}, 1/2)$

• Expect 1/2 of the hypotheses to be true a priori

Probabilities of no features or at least 1 feature?

$$p_{\gamma} \sim \mathsf{Binomial}(\mathsf{n}, 1/2)$$

- probability of no features $\gamma^{(n)} = (0,0,0,\dots,0)^T$ or $p_\gamma = 0$

$$\Pr(p_\gamma=0)=\pi_0^n=0.5^n$$

- approximately 0 for large *n*
- Similarlyy, the probability of at least one feature is $1-0.5^npprox 1$

6

Control Type I Errors

• Suppose we want to fix π_0 to protect against Type I errors blowing up as n increases

$$\Pr(p_\gamma=oldsymbol{0}_n)=rac{1}{2}=\pi_0^n$$

- "Bayesian Bonferroni Prior"
- leads to $\pi_0=0.5^{1/n}$ very close to 1 for large n! We would need overwhelming evidence in the data for $\Pr(H_{1i}\mid y^{(n)})$ to not be pprox 0!
- not a great idea to prespecify $\pi_0!$

7

Approach 2: Empirical Bayes

• Estimate π_0 from the data by maximizing the marginal likelihood

$$egin{aligned} Y_i \mid \mu_i, \sigma^2 \mid & \stackrel{ind}{\sim} \mathsf{N}(\mu_i, \sigma^2) \ & \mu_i \mid au, \pi_0 \stackrel{iid}{\sim} \pi_0 \delta_0 + (1 - \pi_0) \mathsf{N}(\mu_i; 0, au) \end{aligned}$$

• marginal likelihood

$$egin{split} \mathcal{L}(\pi_{0}, au) &= \int_{\mathbb{R}^{n}} \prod_{i=1}^{n} \mathsf{N}(y_{i};\mu_{i},\sigma^{2}) \left\{ \pi_{0}\delta_{0}(\mu_{i}) + (1-\pi_{0})\mathsf{N}(\mu_{i};0, au)
ight\} d\mu_{1}\dots d\mu_{n} \ &= \prod_{i=1}^{n} \int_{\mathbb{R}} \mathsf{N}(y_{i};\mu_{i},\sigma^{2}) \left\{ \pi_{0}\delta_{0}(\mu_{i}) + (1-\pi_{0})\mathsf{N}(\mu_{i};0, au)
ight\} d\mu_{i} \end{split}$$

- Conjugate or nice setups we can integrate out μ_i and then maximize marginal likelihood for π_0 and τ
- Numerical integration (lab) or EM algorithms to get $\hat{\pi}_0^{\rm EB}$ and $\hat{\tau}^{\rm EB}$

Expectation-Maximization ($\sigma=1$)

Introduce latent variables so that "complete" data likelihood is nice! (no integrals!)

$$egin{aligned} y_i \mid \gamma_i, au \stackrel{iid}{\sim} \mathsf{N}(0,1)^{1-\gamma_i} \mathsf{N}(0,1+ au)^{\gamma_i} \ \gamma_i \mid \pi_0 \stackrel{iid}{\sim} \mathsf{Ber}(1-\pi_0) \end{aligned}$$

- Iterate: For $t = 1, \ldots$
- M-step: Solve for $(\hat{\pi}_0^{(t)}, \hat{ au}^{(t)}) = rg \max \mathcal{L}(\pi_0, au \mid \hat{\gamma}^{(t-1)})$
- E-step: find the expected values of the latent sufficient statistics given the data, $\hat{\pi}_0^{(t)}$, $\hat{\tau}^{(t)}$ (i.e. posterior expectation)

$$\hat{\gamma}^{(t)} = \mathsf{E}[\gamma_i \mid y, \hat{\pi}_0^{(t)}, \hat{ au}^{(t)}]$$

• Clyde & George (2000) Silverman & Johnstone (2004) for orthogonal regression

10/26/23, 8:21 AM

9

M-Step

• log-likelihood

$$egin{split} \mathcal{L}(\pi_{0}, au) = &\sum_{i}(1-\gamma_{i})\log(\pi_{0})+\gamma_{i}\log(1-\pi_{0})+\ &\sum_{i}(1-\gamma_{i})N(y_{i};0,1)+\gamma_{i}N(y_{i};0,1+ au) \end{split}$$

- plug in $\hat{\gamma}_i^{(t)}$ above and maximize wrt π_0 and au
- $\hat{\pi}_0^{(t)} = 1 rac{\sum_i \hat{\gamma}_i^{(t)}}{n}$
- $\hat{ au}^{(t)} = \max\{0, rac{\sum_i \hat{\gamma}_i^{(t)} y_i^2}{\sum_i \hat{\gamma}_i^{(t)}} 1\}$

E-Step

Posterior distribution for $\gamma_i \mid y_i, \hat{ au}, \hat{\pi}$

$$\gamma_i \mid y_i, \hat{ au}, \hat{\pi}_0 \overset{ ext{iid}}{\sim} \mathsf{Ber}(\omega_i)$$

•
$$\omega_i = rac{\mathcal{O}_i}{1+\mathcal{O}_i}$$
 with posterior odds \mathcal{O}_i

$$egin{split} \mathcal{O}_i &= rac{1 - \hat{\pi}_0^{(t)}}{\hat{\pi}_0^{(t)}} imes \mathsf{BF}_{10} \ & \ \mathsf{BF}_{10} &= rac{p(y \mid \gamma_i = 1, \hat{ au}^{(t)})}{p(y \mid \gamma_i = 0)} = rac{1}{(1 + \hat{ au}^{(t)})^{1/2}} e^{rac{1}{2} y_i^2 rac{\hat{ au}^{(t)}}{1 + \hat{ au}^{(t)}}} \end{split}$$

Adding Noise

What happens to $\hat{\pi}_0^{\mathsf{EB}}$ if have all noise?

-
$$\hat au o 0$$
 as $n o\infty$ (here $n=10000$) ($\hat au^{(t)}=\max\{0,rac{\sum_i\hat\gamma_i^{(t)}y_i^2}{\sum_i\hat\gamma_i^{(t)}}-1\}$) so

distribution collapses to the same as the noise model

- $\mathsf{BF}_{10}
 ightarrow 1$ so $\hat{\pi}_0^{(t)} = \hat{\pi}_0^{(0)}$
- $\hat{\pi}_0^{\mathsf{EB}}$ gets stuck at initial value of π_0 !
- posterior probability of H_{1i} not consistent as well as π_0
- similar problems with convergence to a local mode with even with more features

Approach 3: Fully Bayes

Choose a prior for π_0 (and au), simplest case $\pi_0 \sim \mathsf{Beta}(a,b)$

• Consider the thought experiment where we don't know the first hypothesis but we know that the others are all null $\gamma_j=0$ for $j=2,\ldots,n$

$$\gamma^{(n)}=(?,0,,\ldots,0)^T$$

- $\gamma_i \sim \mathsf{Bernoulli}(1-\pi_0)$
- Update the prior for π_0 to include the info $\gamma_j=0$ for $j=2,\ldots,n$

$$egin{aligned} &\pi(\pi_0 \mid \gamma_2, \dots, \gamma_n) \propto \pi_0^{a-1} (1-\pi_0)^{b-1} \prod_{j=2}^n \pi_0^{1-\gamma_j} (1-\pi_0)^{\gamma_j} \ &\pi(\pi_0 \mid \gamma_2, \dots, \gamma_n) \propto \pi_0^{a+n-1-1} (1-\pi_0)^{b-1} \end{aligned}$$

Beta Posterior

Posterior $\pi_0 \mid \gamma_2, \ldots, \gamma_n \sim \mathsf{Beta}(\mathsf{a} + \mathsf{n}$ - 1, b) with mean

$$\mathsf{E}[\pi_0 \mid \gamma_2, \dots, \gamma_n] = \frac{a+n-1}{a+n-1+b}$$

• suppose a = b = 1 (Uniform prior)

$$\mathsf{E}[\pi_0 \mid \gamma_2, \dots, \gamma_n] = \frac{n}{n+1}$$

- implies probability of $H_{01} o 1$ and $H_{11} o 0$ as $n o \infty$ borrowing strength from other nulls
- Multiplicity adjustment as in the EB case
- Scott & Berger (2006 JSPI, 2010 AoS) show that above framework protects against increasing Type I errors with *n*; We also get FDR control automatically

Induced Prior on p_γ

> Exercise for the Energetic Student:

If $p_\gamma \mid \pi_0 \sim \mathsf{Binomial}(n, 1 - \pi_0)$ and $\pi_0 \sim \mathsf{Beta}(1, 1)$

- What is the probability that $p_\gamma=0$
- What is the probability that $p_\gamma = n$
- What is the distribution of p_{γ} ?
- This is a Beta-Binomial distribution!
- special case a = b = 1 this is a discrete uniform on model size!

Bottomline: We need to "learn" key parameters in our hierarchical prior or the magic doesn't work! Borrowing comes through using all the data to inform about "global" parameters in the prior, in this case π_0 (and τ)!

Posteriors, Inference and Decisions

- Posterior distribution of μ_i is a spike at 0 and continous distribution
- Joint posterior distribution of μ_1, \ldots, μ_n averaged over hypotheses "Model averaging"
- select a hypothesis
- Report posterior (summaries) conditional on a hypothesis
- Issue is the winner's curse !
- Need to have coherent conditional inference given that you selected a hypothesis.
- Don't report selected hypotheses but report results under model averaging!

Choice of Slab

$$\mu_i \stackrel{iid}{\sim} \pi_0 \delta_0 + (1-\pi_0) g(\mu_i \mid 0, au, H_{i1})$$

- growing literature on posterior contraction in high dimensional settings as $n o \infty$ with "sparse signals"
- posterior $\pi(\mu^{(n)}) \mid y^{(n)})$
- Want

$$\Pr(\mu^{(n)} \in \mathcal{N}_{\epsilon_n}(\mu^{(n)}_0) \mid y^{(n)}) o 1$$

- assume that there are *s* features (fixed or growing slowly)
- feature values are bounded away from zero
- Want the posterior under the Spike and Slab prior to concentrate on this neighborhood (ie. probability 1)
- active area of research!