Lecture 14: Basics of Bayesian Hypothesis Testing

STA702

Merlise Clyde Duke University

Feature Selection via Shrinkage

- modal estimates in regression models under certain shrinkage priors will set a subset of coefficients to zero
- not true with posterior mean
- multi-modal posterior
- no prior probability that coefficient is zero
- how should we approach selection/hypothesis testing?
- Bayesian Hypothesis Testing

Basics of Bayesian Hypothesis Testing

Suppose we have univariate data $Y_i \overset{iid}{\sim} \mathcal{N}(heta, 1), \mathbf{Y} = (y_i, \dots, y_n)^T$

- goal is to test $\mathcal{H}_0: heta=0; \;\; \mathrm{vs}\; \mathcal{H}_1: heta
 eq 0$
- Additional unknowns are \mathcal{H}_0 and \mathcal{H}_1
- Put a prior on the actual hypotheses/models, that is, on $\pi(\mathcal{H}_0) = \Pr(\mathcal{H}_0 = \operatorname{True})$ and $\pi(\mathcal{H}_1) = \Pr(\mathcal{H}_1 = \operatorname{True})$.
- (Marginal) Likelihood of the hypotheses: $\mathcal{L}(\mathcal{H}_i) \propto p(\mathbf{y} \mid \mathcal{H}_i)$

$$egin{aligned} p(\mathbf{y} \mid \mathcal{H}_0) &= \prod_{i=1}^n (2\pi)^{-1/2} \exp{-rac{1}{2}}(y_i - 0)^2 \ p(\mathbf{y} \mid \mathcal{H}_1) &= \int_{\Theta} p(\mathbf{y} \mid \mathcal{H}_1, heta) p(heta \mid \mathcal{H}_1) \, d heta \end{aligned}$$

Bayesian Approach

- Need priors distributions on parameters under each hypothesis
 - in our simple normal model, the only additional unknown parameter is θ
 - under \mathcal{H}_0 , $\theta = 0$ with probability 1
 - under $\mathcal{H}_0, heta \in \mathbb{R}$ we could take $\pi(heta) = \mathcal{N}(heta_0, 1/ au_0^2)$.
- Compute marginal likelihoods for each hypothesis, that is, $\mathcal{L}(\mathcal{H}_0)$ and $\mathcal{L}(\mathcal{H}_1)$.
- Obtain posterior probabilities of \mathcal{H}_{0} and \mathcal{H}_{1} via Bayes Theorem.

$$\pi(\mathcal{H}_1 \mid \mathbf{y}) = rac{p(\mathbf{y} \mid \mathcal{H}_1) \pi(\mathcal{H}_1)}{p(\mathbf{y} \mid \mathcal{H}_0) \pi(\mathcal{H}_0) + p(\mathbf{y} \mid \mathcal{H}_1) \pi(\mathcal{H}_1)}$$

• Provides a joint posterior distribution for θ and \mathcal{H}_i : $p(\theta \mid \mathcal{H}_i, \mathbf{y})$ and $\pi(\mathcal{H}_i \mid \mathbf{y})$

Hypothesis Tests via Decision Theory

- Loss function for hypothesis testing
 - $\hat{\mathcal{H}}$ is the chosen hypothesis
 - \mathcal{H}_{true} is the true hypothesis, \mathcal{H} for short
- Two types of errors:
 - Type I error: $\hat{\mathcal{H}} = 1$ and $\mathcal{H} = 0$
 - Type II error: $\hat{\mathcal{H}} = 0$ and $\mathcal{H} = 1$
- Loss function:

$$L(\hat{\mathcal{H}},\mathcal{H})=w_{1}\, \mathbb{1}(\hat{\mathcal{H}}=\mathbb{1},\mathcal{H}=0)+w_{2}\, \mathbb{1}(\hat{\mathcal{H}}=0,\mathcal{H}=1)\, .$$

- w_1 weights how bad it is to make a Type I error
- w₂ weights how bad it is to make a Type II error

Loss Function Functions and Decisions

• Relative weights $w=w_2/w_1$

$$L(\hat{\mathcal{H}},\mathcal{H})=\ 1(\hat{\mathcal{H}}=1,\mathcal{H}=0)+w\ 1(\hat{\mathcal{H}}=0,\mathcal{H}=1)$$

• Special case w = 1

$$L(\hat{\mathcal{H}},\mathcal{H}) = 1(\hat{\mathcal{H}}
eq \mathcal{H})$$

- known as 0-1 loss (most common)
- Bayes Risk (Posterior Expected Loss)

$$\mathsf{E}_{\mathcal{H} \mid \mathbf{y}}[L(\hat{\mathcal{H}},\mathcal{H})] = 1(\hat{\mathcal{H}}=1) \pi(\mathcal{H}_0 \mid \mathbf{y}) + 1(\hat{\mathcal{H}}=0) \pi(\mathcal{H}_1 \mid \mathbf{y})$$

• Minimize loss by picking hypothesis with the highest posterior probability

Bayesian hypothesis testing

• Using Bayes theorem,

$$\pi(\mathcal{H}_1 \mid \mathbf{y}) = rac{p(\mathbf{y} \mid \mathcal{H}_1) \pi(\mathcal{H}_1)}{p(\mathbf{y} \mid \mathcal{H}_0) \pi(\mathcal{H}_0) + p(\mathbf{y} \mid \mathcal{H}_1) \pi(\mathcal{H}_1)},$$

• If $\pi(\mathcal{H}_0)=0.5$ and $\pi(\mathcal{H}_1)=0.5$ a priori, then

$$egin{aligned} \pi(\mathcal{H}_1 \mid \mathbf{y}) &= rac{0.5 p(\mathbf{y} \mid \mathcal{H}_1)}{0.5 p(\mathbf{y} \mid \mathcal{H}_0) + 0.5 p(\mathbf{y} \mid \mathcal{H}_1)} \ &= rac{p(\mathbf{y} \mid \mathcal{H}_1)}{p(\mathbf{y} \mid \mathcal{H}_0) + p(\mathbf{y} \mid \mathcal{H}_1)} = rac{1}{rac{p(\mathbf{y} \mid \mathcal{H}_0)}{p(\mathbf{y} \mid \mathcal{H}_1)} + 1} \end{aligned}$$

Bayes factors

- The ratio $\frac{p(\mathbf{y}|\mathcal{H}_0)}{p(\mathbf{y}|\mathcal{H}_1)}$ is a ratio of marginal likelihoods and is known as the **Bayes factor** in favor of \mathcal{H}_0 , written as \mathcal{BF}_{01} . Similarly, we can compute \mathcal{BF}_{10} via the inverse ratio.
- Bayes factors provide a weight of evidence in the data in favor of one model over another. and are used as an alternative to the frequentist p-value.
- Rule of Thumb: $\mathcal{BF}_{01} > 10$ is strong evidence for \mathcal{H}_0 ; $\mathcal{BF}_{01} > 100$ is decisive evidence for \mathcal{H}_0 .
- In the example (with equal prior probabilities),

$$\pi(\mathcal{H}_1 \mid \mathbf{y}) = rac{1}{rac{p(\mathbf{y} \mid \mathcal{H}_0)}{p(\mathbf{y} \mid \mathcal{H}_1)} + 1} = rac{1}{\mathcal{BF}_{01} + 1}$$

- the higher the value of \mathcal{BF}_{01} , that is, the weight of evidence in the data in favor of \mathcal{H}_0 , the lower the marginal posterior probability that \mathcal{H}_1 is true.
- \mathcal{BF}_{01} \uparrow , $\pi(\mathcal{H}_1 \mid \mathbf{y}) \downarrow$.

Posterior Odds and Bayes Factors

• Posterior odds $\frac{\pi(\mathcal{H}_0|\mathbf{y})}{\pi(\mathcal{H}_1|\mathbf{y})}$

$$\frac{\pi(\mathcal{H}_0|\mathbf{y})}{\pi(\mathcal{H}_1|\mathbf{y})} = \frac{p(\mathbf{y}|\mathcal{H}_0)\pi(\mathcal{H}_0)}{p(\mathbf{y}|\mathcal{H}_0)\pi(\mathcal{H}_0) + p(\mathbf{y}|\mathcal{H}_1)\pi(\mathcal{H}_1)} \div \frac{p(\mathbf{y}|\mathcal{H}_1)\pi(\mathcal{H}_1)}{p(\mathbf{y}\mathcal{H}_0)\pi(\mathcal{H}_0) + p(\mathbf{y}|\mathcal{H}_1)\pi(\mathcal{H}_1)}$$

$$=rac{p(\mathbf{y}|\mathcal{H}_0)\pi(\mathcal{H}_0)}{p(\mathbf{y}|\mathcal{H}_0)\pi(\mathcal{H}_0)+p(\mathbf{y}|\mathcal{H}_1)\pi(\mathcal{H}_1)} imesrac{p(\mathbf{y}|\mathcal{H}_0)\pi(\mathcal{H}_0)+p(\mathbf{y}|\mathcal{H}_1)\pi(\mathcal{H}_1)}{p(\mathbf{y}|\mathcal{H}_1)\pi(\mathcal{H}_1)}$$

$\cdot \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$_ \ {\pi({\cal H}_0)}$ 、	$\sum p(\mathbf{y} \mid \mathcal{H}_0)$
$\overline{}} \overline{\pi(\mathcal{H}_1 \mid \mathbf{y})}^{-}$	$\overline{\pi(\mathcal{H}_1)}$	$\overline{p(\mathbf{y} \mid \mathcal{H}_1)}$
\smile	\smile	\smile
posterior odds	prior odds	Bayes factor \mathcal{BF}_{01}

• The Bayes factor can be thought of as the factor by which our prior odds change (towards the posterior odds) in the light of the data.

Likelihoods & Evidence

Maximized Likelihood. n=10

p-value = 0.05

Marginal Likelihoods & Evidence

Maximized & Marginal Likelihoods

 \mathcal{BF}_{10} = 1.73 or \mathcal{BF}_{01} = 0.58 Posterior Probability of \mathcal{H}_0 = 0.3665

Candidate's Formula (Besag 1989)

Alternative expression for BF based on Candidate's Formula or Savage-Dickey ratio

$$\mathcal{BF}_{01} = \frac{p(\mathbf{y} \mid \mathcal{H}_0)}{p(\mathbf{y} \mid \mathcal{H}_1)} = \frac{\pi_{\theta}(0 \mid \mathcal{H}_1, \mathbf{y})}{\pi_{\theta}(0 \mid \mathcal{H}_1)}$$
$$\pi_{\theta}(\theta \mid \mathcal{H}_i, \mathbf{y}) = \frac{p(\mathbf{y} \mid \theta, \mathcal{H}_i)\pi(\theta \mid \mathcal{H}_i)}{p(\mathbf{y} \mid \mathcal{H}_i)} \Rightarrow p(\mathbf{y} \mid \mathcal{H}_i) = \frac{p(\mathbf{y} \mid \theta, \mathcal{H}_i)\pi(\theta \mid \mathcal{H}_i)}{\pi_{\theta}(\theta \mid \mathcal{H}_i, \mathbf{y})}$$
$$\mathcal{BF}_{01} = \frac{\frac{p(\mathbf{y} \mid \theta, \mathcal{H}_0)\pi(\theta \mid \mathcal{H}_0)}{\pi_{\theta}(\theta \mid \mathcal{H}_0, \mathbf{y})}}{\frac{p(\mathbf{y} \mid \theta, \mathcal{H}_1)\pi(\theta \mid \mathcal{H}_1)}{\pi_{\theta}(\theta \mid \mathcal{H}_1, \mathbf{y})}} = \frac{\frac{p(\mathbf{y} \mid \theta = 0)\delta_0(\theta)}{\delta_0(\theta)}}{\frac{p(\mathbf{y} \mid \theta, \mathcal{H}_1)\pi(\theta \mid \mathcal{H}_1)}{\pi_{\theta}(\theta \mid \mathcal{H}_1, \mathbf{y})}}$$

• Simplifies to the ratio of the posterior to prior densities when evaluated θ at zero

Prior

Plots were based on a $\theta \mid \mathcal{H}_1 \sim \mathsf{N}(0, 1)$

- centered at value for θ under \mathcal{H}_{θ} (goes back to Jeffreys)
- "unit information prior" equivalent to a prior sample size is 1
- is this a "reasonable prior"?
 - What happens if $n \to \infty$?
 - What happens of $au_0 o 0$? (less informative)

Choice of Precision

- $au_0=1/10$
- Bayes Factor for \mathcal{H}_{0} to \mathcal{H}_{1} is 1.5
- Posterior Probability of \mathcal{H}_0 = 0.6001
- $au_0 = 1/1000$
- Bayes Factor for \mathcal{H}_0 to \mathcal{H}_1 is 14.65
- Posterior Probability of \mathcal{H}_0 = 0.9361

Vague Priors & Hypothesis Testing

- As $au_0 o 0$ the $\mathcal{BF}_{\mathit{01}} o \infty$ and $\Pr(\mathcal{H}_{\mathit{0}} \mid \mathbf{y} o \mathit{1}!)$
- As we use a less & less informative prior for θ under H₁ we obtain more & more evidence for H₀ over H₁!
- Known as **Bartlett's Paradox** the paradox is that a seemingly non-informative prior for θ is very informative about \mathcal{H} !
- General problem with nested sequence of models. If we choose vague priors on the additional parameter in the larger model we will be favoring the smaller models under consideration!
- Similar phenomenon with increasing sample size (Lindley's Paradox)

Bottom Line Don't use vague priors!

What should we use then?

Other Options

• Place a prior on au_0

```
	au_0 \sim \mathsf{Gamma}(1/2,1/2)
```

- If $\theta \mid \tau_0, \mathcal{H}_1 \sim \mathsf{N}(0, 1/\tau_0)$, then $\theta_0 \mid \mathcal{H}_1$ has a $\mathsf{Cauchy}(0, 1)$ distribution! Recommended by Jeffreys (1961)
- no closed form expressions for marginal likelihood!

Intrinsic Bayes Factors & Priors (Berger & Pericchi)

- Can't use improper priors under \mathcal{H}_1
- use part of the data y(l) to update an improper prior on θ to get a proper posterior $\pi(\theta \mid \mathcal{H}_i, y(l))$
- use $\pi(\theta \mid y(l), \mathcal{H}_i)$ to obtain the posterior for θ based on the rest of the training data
- Calculate a Bayes Factor (avoids arbitrary normalizing constants!)
- Choice of training sample y(l)?
- Berger & Pericchi (1996) propose "averaging" over training samples intrinsic Bayes Factors
- **intrinsic prior** on θ that leads to the Intrisic Bayes Factor

Error

httrs://sta702-F23.github.io/website/