Lecture 14: Basics of Bayesian Hypothesis Testing

STA702

Merlise Clyde Duke University

Feature Selection via Shrinkage

- modal estimates in regression models under certain shrinkage priors will set a subset of coefficients to zero
- not true with posterior mean
- multi-modal posterior
- no prior probability that coefficient is zero
- how should we approach selection/hypothesis testing?
- Bayesian Hypothesis Testing

Basics of Bayesian Hypothesis Testing

Suppose we have univariate data $Y_i \stackrel{iid}{\sim} \mathcal{N}(\theta,1)$, $\mathbf{Y} = (y_i, \dots, y_n)^T$

- goal is to test $\mathcal{H}_0: \theta = 0; \;\; \mathrm{vs} \; \mathcal{H}_1: \theta \neq 0$
- Additional unknowns are \mathcal{H}_0 and \mathcal{H}_1
- Put a prior on the actual hypotheses/models, that is, on $\pi(\mathcal{H}_0)=\Pr(\mathcal{H}_0=\text{True})$ and $\pi(\mathcal{H}_1)=\Pr(\mathcal{H}_1=\text{True}).$
- \bullet (Marginal) Likelihood of the hypotheses: $\mathcal{L}(\mathcal{H}_i) \propto p(\mathbf{y} \mid \mathcal{H}_i)$

$$
p(\mathbf{y} \mid \mathcal{H}_0) = \prod_{i=1}^n (2\pi)^{-1/2} \exp{-\frac{1}{2}(y_i-0)^2}
$$

$$
p(\mathbf{y} \mid \mathcal{H}_1) = \int_{\Theta} p(\mathbf{y} \mid \mathcal{H}_1, \theta) p(\theta \mid \mathcal{H}_1) d\theta
$$

Bayesian Approach

- Need priors distributions on parameters under each hypothesis
	- in our simple normal model, the only additional unknown parameter is θ
	- under \mathcal{H}_0 , $\theta = 0$ with probability 1
	- $\mathsf{under}\, \mathcal{H}_0, \theta \in \mathbb{R}$ we could take $\pi(\theta) = \mathcal{N}(\theta_0, 1/\tau_0^2).$
- Compute marginal likelihoods for each hypothesis, that is, $\mathcal{L}(\mathcal{H}_0)$ and $\mathcal{L}(\mathcal{H}_1)$.
- Obtain posterior probabilities of \mathcal{H}_{θ} and \mathcal{H}_{θ} via Bayes Theorem.

$$
\pi(\mathcal{H}_1 \mid \mathbf{y}) = \frac{p(\mathbf{y} \mid \mathcal{H}_1)\pi(\mathcal{H}_1)}{p(\mathbf{y} \mid \mathcal{H}_0)\pi(\mathcal{H}_0) + p(\mathbf{y} \mid \mathcal{H}_1)\pi(\mathcal{H}_1)}
$$

• Provides a joint posterior distribution for θ and \mathcal{H}_i : $p(\theta | \mathcal{H}_i, \mathbf{y})$ and $\pi(\mathcal{H}_i | \mathbf{y})$

Hypothesis Tests via Decision Theory

- Loss function for hypothesis testing
	- $\hat{\mathcal{H}}$ is the chosen hypothesis
	- \mathcal{H}_{true} is the true hypothesis, \mathcal{H} for short
- Two types of errors:
	- **T**ype I error: $\hat{\mathcal{H}} = 1$ and $\mathcal{H} = 0$
	- **T**ype II error: $\hat{\mathcal{H}} = 0$ and $\mathcal{H} = 1$
- Loss function:

$$
L(\mathcal{\hat{H}},\mathcal{H})=w_\mathit{1} \, \mathit{1}(\mathcal{\hat{H}}=1,\mathcal{H}=0)+w_\mathit{2} \, \mathit{1}(\mathcal{\hat{H}}=0,\mathcal{H}=1)
$$

- \bullet *w*₁ weights how bad it is to make a Type I error
- \bullet w_2 weights how bad it is to make a Type II error

Loss Function Functions and Decisions

• Relative weights $w = w_2/w_1$

$$
L(\mathcal{\hat{H}},\mathcal{H})=~1(\mathcal{\hat{H}}=1,\mathcal{H}=\mathit{0})+w\text{ }1(\mathcal{\hat{H}}=\mathit{0},\mathcal{H}=\mathit{1})
$$

• Special case $w = 1$

$$
L(\hat{\mathcal{H}},\mathcal{H})=1(\hat{\mathcal{H}}\neq \mathcal{H})
$$

- known as 0-1 loss (most common)
- Bayes Risk (Posterior Expected Loss)

$$
\mathsf{E}_{\mathcal{H} \vert \mathbf{y}}[L(\hat{\mathcal{H}},\mathcal{H})] = 1(\hat{\mathcal{H}} = 1) \pi (\mathcal{H}_{\mathit{0}} \mid \mathbf{y}) + 1(\hat{\mathcal{H}} = 0) \pi (\mathcal{H}_{\mathit{1}} \mid \mathbf{y})
$$

Minimize loss by picking hypothesis with the highest posterior probability

Bayesian hypothesis testing

Using Bayes theorem,

$$
\pi(\mathcal{H}_1 \mid \mathbf{y}) = \frac{p(\mathbf{y} \mid \mathcal{H}_1)\pi(\mathcal{H}_1)}{p(\mathbf{y} \mid \mathcal{H}_0)\pi(\mathcal{H}_0) + p(\mathbf{y} \mid \mathcal{H}_1)\pi(\mathcal{H}_1)},
$$

 $\bullet \ \ \mathsf{If} \ \pi(\mathcal{H}_0) = 0.5$ and $\pi(\mathcal{H}_1) = 0.5$ *a priori*, then

$$
\begin{aligned} \pi(\mathcal{H}_1 \mid \mathbf{y}) &= \frac{0.5 p(\mathbf{y} \mid \mathcal{H}_1)}{0.5 p(\mathbf{y} \mid \mathcal{H}_0) + 0.5 p(\mathbf{y} \mid \mathcal{H}_1)} \\ &= \frac{p(\mathbf{y} \mid \mathcal{H}_1)}{p(\mathbf{y} \mid \mathcal{H}_0) + p(\mathbf{y} \mid \mathcal{H}_1)} = \frac{1}{\frac{p(\mathbf{y} \mid \mathcal{H}_0)}{p(\mathbf{y} \mid \mathcal{H}_1)} + 1} \end{aligned}
$$

Bayes factors

- The ratio $\frac{p(\mathbf{y}|\mathcal{H}_0)}{p(\mathbf{y}|\mathcal{H}_0)}$ is a ratio of marginal likelihoods and is known as the **Bayes factor** in favor of ${\cal H}_0$, written as ${\cal BF}_{01}$. Similarly, we can compute ${\cal BF}_{10}$ via the inverse ratio. $p(\mathbf{y}|\mathcal{H}_1)$
- Bayes factors provide a weight of evidence in the data in favor of one model over another. and are used as an alternative to the frequentist p-value.
- **Rule of Thumb**: $\mathcal{BF}_{01} > 10$ is strong evidence for $\mathcal{H}_0; \mathcal{BF}_{01} > 100$ is decisive evidence for ${\cal H}_0.$
- \bullet In the example (with equal prior probabilities),

$$
\pi(\mathcal{H}_1 \mid \mathbf{y}) = \frac{1}{\frac{p(\mathbf{y}|\mathcal{H}_0)}{p(\mathbf{y}|\mathcal{H}_1)}+1} = \frac{1}{\mathcal{BF}_{01}+1}
$$

- the higher the value of \mathcal{BF}_{01} , that is, the weight of evidence in the data in favor of \mathcal{H}_0 , the lower the marginal posterior probability that ${\cal H}_1$ is true.
- $\mathcal{BF}_{01} \uparrow, \pi(\mathcal{H}_1 | \mathbf{y}) \downarrow$.

Posterior Odds and Bayes Factors

prior odds

Posterior odds *π*(H0∣**y**) *π*(H1∣**y**)

∴
∴

posterior odds

$$
s_{16.702 \text{ ball 2023 - Lechur 16. Balec of its position hypothesis testing}
$$

\nPosterior odds and Bayes Factors
\n
$$
\frac{\pi(\mathcal{H}_0|\mathbf{y})}{\pi(\mathcal{H}_1|\mathbf{y})} = \frac{p(\mathbf{y}|\mathcal{H}_0)\pi(\mathcal{H}_0)}{p(\mathbf{y}|\mathcal{H}_0)\pi(\mathcal{H}_0) + p(\mathbf{y}|\mathcal{H}_1)\pi(\mathcal{H}_1)} + \frac{p(\mathbf{y}|\mathcal{H}_1)\pi(\mathcal{H}_1)}{p(\mathbf{y}|\mathcal{H}_0)\pi(\mathcal{H}_0) + p(\mathbf{y}|\mathcal{H}_1)\pi(\mathcal{H}_1)}
$$

\n
$$
= \frac{p(\mathbf{y}|\mathcal{H}_0)\pi(\mathcal{H}_0) + p(\mathbf{y}|\mathcal{H}_1)\pi(\mathcal{H}_1)}{p(\mathbf{y}|\mathcal{H}_0)\pi(\mathcal{H}_0) + p(\mathbf{y}|\mathcal{H}_1)\pi(\mathcal{H}_1)} \times \frac{p(\mathbf{y}|\mathcal{H}_0)\pi(\mathcal{H}_0) + p(\mathbf{y}|\mathcal{H}_1)\pi(\mathcal{H}_1)}{p(\mathbf{y}|\mathcal{H}_1)\pi(\mathcal{H}_1)}
$$

\n
$$
\therefore \frac{\pi(\mathcal{H}_0|\mathbf{y})}{\pi(\mathcal{H}_1|\mathbf{y})} = \frac{\pi(\mathcal{H}_0)}{\pi(\mathcal{H}_1)} \times \frac{p(\mathbf{y}|\mathcal{H}_0)}{p(\mathbf{y}|\mathcal{H}_1)} + \frac{p(\mathbf{y}|\mathcal{H}_0)\pi(\mathcal{H}_0)}{p(\mathbf{y}|\mathcal{H}_1)\pi(\mathcal{H}_1)}
$$

\n
$$
\text{The Bayes factor can be thought of as the factor by which our prior odds change (towards the posterior odds) in the light of the data.}
$$

The Bayes factor can be thought of as the factor by which our prior odds change (towards the posterior odds) in the light of the data.

 $\mathrm{Bayes\, factor\ } \mathcal{BF}_{01}$

Likelihoods & Evidence

$\mathsf{Maximize}$ d Likelihood. $n=10$

p-value = 0.05

Marginal Likelihoods & Evidence

Maximized & Marginal Likelihoods

 $\mathcal{BF}_{\mathit{10}}$ = 1.73 or $\mathcal{BF}_{\mathit{01}}$ = 0.58 Posterior Probability of $\mathcal{H}_{\it 0}$ = 0.3665

Candidate's Formula (Besag 1989)

Alternative expression for BF based on Candidate's Formula or Savage-Dickey ratio

$$
\mathcal{BF}_{01}=\frac{p(\mathbf{y}\mid \mathcal{H}_0)}{p(\mathbf{y}\mid \mathcal{H}_1)}=\frac{\pi_\theta(\theta\mid \mathcal{H}_1,\mathbf{y})}{\pi_\theta(\theta\mid \mathcal{H}_1)}\\\pi_\theta(\theta\mid \mathcal{H}_i,\mathbf{y})=\frac{p(\mathbf{y}\mid \theta,\mathcal{H}_i)\pi(\theta\mid \mathcal{H}_i)}{p(\mathbf{y}\mid \mathcal{H}_i)}\Rightarrow p(\mathbf{y}\mid \mathcal{H}_i)=\frac{p(\mathbf{y}\mid \theta,\mathcal{H}_i)\pi(\theta\mid \mathcal{H}_i)}{\pi_\theta(\theta\mid \mathcal{H}_i,\mathbf{y})}
$$
\n
$$
\mathcal{BF}_{01}=\frac{\frac{p(\mathbf{y}|\theta,\mathcal{H}_0)\pi(\theta\mid \mathcal{H}_0)}{\pi_\theta(\theta\mid \mathcal{H}_0,\mathbf{y})}}{\frac{p(\mathbf{y}|\theta,\mathcal{H}_1)\pi(\theta\mid \mathcal{H}_1)}{\pi_\theta(\theta\mid \mathcal{H}_1,\mathbf{y})}}=\frac{\frac{p(\mathbf{y}|\theta=0)\delta_0(\theta)}{\delta_0(\theta)}}{\frac{p(\mathbf{y}|\theta,\mathcal{H}_1)\pi(\theta\mid \mathcal{H}_1)}{\pi_\theta(\theta\mid \mathcal{H}_1,\mathbf{y})}}=\frac{p(\mathbf{y}\mid \theta=0)}{p(\mathbf{y}\mid \theta,\mathcal{H}_1)}\frac{\delta_0(\theta)}{\delta_0(\theta)}\frac{\pi_\theta(\theta\mid \mathcal{H}_1,\mathbf{y})}{\pi(\theta\mid \mathcal{H}_1)}
$$

Simplifies to the ratio of the posterior to prior densities when evaluated *θ* at zero

Prior

Plots were based on a $\theta \mid \mathcal{H}_1 \sim N(0, 1)$

- centered at value for θ under \mathcal{H}_{0} (goes back to Jeffreys)
- "unit information prior" equivalent to a prior sample size is 1
- is this a "reasonable prior"?
	- What happens if $n \to \infty$?
	- What happens of $\tau_0 \rightarrow 0$? (less informative)

Choice of Precision

- $\tau_0 = 1/10$
- Bayes Factor for \mathcal{H}_{θ} to \mathcal{H}_{θ} is 1.5
- Posterior Probability of \mathcal{H}_{0} = 0.6001
- $\tau_0 = 1/1000$
- Bayes Factor for \mathcal{H}_{0} to \mathcal{H}_{1} is 14.65
- Posterior Probability of \mathcal{H}_{0} = 0.9361

Vague Priors & Hypothesis Testing

- As $\tau_0 \to 0$ the $\mathcal{BF}_{01} \to \infty$ and $\Pr(\mathcal{H}_0 \mid \mathbf{y} \to 1!)$
- As we use a less & less informative prior for θ under ${\cal H}_I$ we obtain more & more evidence for ${\mathcal{H}}_\theta$ over ${\mathcal{H}}_I!$
- Known as Bartlett's Paradox the paradox is that a seemingly non-informative prior for θ is very informative about $\mathcal{H}!$
- General problem with nested sequence of models. If we choose vague priors on the additional parameter in the larger model we will be favoring the smaller models under consideration!
- Similar phenomenon with increasing sample size (**Lindley's Paradox**)

Bottom Line Don't use vague priors!

What should we use then?

Other Options

• Place a prior on τ_0

```
τ0 ∼ Gamma(1/2, 1/2)
```
- If $\theta \mid \tau_0, {\cal H}_1 \sim {\sf N}(\, \theta, 1/\tau_\theta)$, then $\theta_0 \mid {\cal H}_1$ has a $\sf Cauchy(0,1)$ distribution! Recommended by Jeffreys (1961)
- no closed form expressions for marginal likelihood!

Intrinsic Bayes Factors & Priors (Berger & Pericchi)

- Can't use improper priors under \mathcal{H}_1
- use part of the data $y(l)$ to update an improper prior on θ to get a proper posterior $\pi(\theta | \mathcal{H}_i, y(l))$
- use $\pi(\theta \mid y(l), \mathcal{H}_i)$ to obtain the posterior for θ based on the rest of the training data
- Calculate a Bayes Factor (avoids arbitrary normalizing constants!)
- Choice of training sample $y(l)$?
- Berger & Pericchi (1996) propose "averaging" over training samples **intrinsic Bayes Factors**
- **intrinsic prior** on *θ* that leads to the Intrisic Bayes Factor

Error \cdot

[https://sta702-F23.github.io/website/](https://sta702-f23.github.io/website/)