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Feature Selection via Shrinkage

e modal estimates in regression models under certain shrinkage priors will set a subset
of coefficients to zero

e not true with posterior mean

e multi-modal posterior

e no prior probability that coefficient is zero

¢ how should we approach selection/hypothesis testing?

e Bayesian Hypothesis Testing
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Basics of Bayesian Hypothesis Testing

Suppose we have univariate data ¥; 2% N1, Y = (Yi,---,yn)"
goalistotest Hop: 0 =0; vsH1:0#0

Additional unknowns are Hy and H;

Put a prior on the actual hypotheses/models, that is,on m(#y) = Pr(Ho = True)
and (1) = Pr(H1 = True).
(Marginal) Likelihood of the hypotheses: £ (H;) < p(y | H;)

- 1
_ —1/2 = (v 2
by | #o) = [[em) e -3 -0

p(y | M) = /@ p(y | Ha,0)p(0 | H1) db
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Bayesian Approach

Need priors distributions on parameters under each hypothesis
= in our simple normal model, the only additional unknown parameter is 6
» under Hg, 0 = 0 with probability 1
= under Ho, 6 € R we could take w(6) = N (6o, 1/72).
Compute marginal likelihoods for each hypothesis, thatis, L (H ) and L(H ;).

Obtain posterior probabilities of H y and H ; via Bayes Theorem.

p(y | H1)m(Ha)
y | Ho)m(Ho) + p(y | Hi)w(H1)

m(Hil|y) = o

Provides a joint posterior distribution for  and H;: p(0 | Hi,y) and w(H; | y)
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Hypothesis Tests via Decision Theory
e Loss function for hypothesis testing

= 7{is the chosen hypothesis
» ;e 1S the true hypothesis, H for short

e Two types of errors:
. Typelerror:’}-l =1landH =0
= Type ll error:{ = 0and H = 1

e |oss function:
LH,H) =wi I(H=1,H=0)+ws 1(H =0, =1)

= w; weights how bad it is to make a Type | error

= wy Weights how bad it is to make a Type Il error
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Loss Function Functions and Decisions

Relative weights w = wa /w1

LAHH)=1(H=1,H=0)+wIl(H=0%H=1)

Specialcasew =1

LH,H)=1(H+H)

known as 0-1 loss (most common)

Bayes Risk (Posterior Expected Loss)

Eny L, H)] = 1(H = Dn(Ho | y) + 1(H = 0)n(H1|y)

Minimize loss by picking hypothesis with the highest posterior probability
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Bayesian hypothesis testing

e Using Bayes theorem,

p(y | Hi)m(H1)
y | Ho)m(Ho) +p(y | Hi)w(Hi1)’

o If 7(#o) = 0.5and w(H1) = 0.5 a priori, then

0.5p(y | H1)

71-(%1 ‘y): p(

(i ly) = 0.5p(y | Ho) + 0.5p(y | H1)
_ p(y | H1) _ 1
p(y | Ho) +p(y [#1) 2} |
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Bayes factors

p(y[Ho)
p(y[H1)
favor of H, written as BFy;. Similarly, we can compute BFg via the inverse ratio.

e Theratio is a ratio of marginal likelihoods and is known as the Bayes factor in

e Bayes factors provide a weight of evidence in the data in favor of one model over
another. and are used as an alternative to the frequentist p-value.

e Rule of Thumb: BFy; > 10is strong evidence for Hy; BFo1 > 100 is decisive
evidence for H,.

* Inthe example (with equal prior probabilities),

1 1

("1 1Y) = S5m0 L1 BFau+1

p(y|H1)

* the higher the value of BFy, that is, the weight of evidence in the data in favor of H,,
the lower the marginal posterior probability that H; is true.

 BForn t,m(Hily) |-
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Posterior Odds and Bayes Factors

m(Holy)
m(Haly)

m(Holy) p(y[Ho)m(Ho)

e Posterior odds

10/23/23, 10:05 PM

p(y|H1)m(H1)

m(Hily)  p(y|Ho)m(Ho) + p(y|H1)m(Hi)

p(y[Ho)m(Ho)

" p(yHo)m(Ho) + p(y|H1)m(Hi)

p(y[Ho)m(Ho) + p(y|H1)m(H1)

ca(Holy)  m(Ho)  p(y | Ho)

e o ><
r(Mily) 7))  p(y|#Hi)
—_— = —
posterior odds prior odds  Bayes factor BF;

p(y[Ho)m(Ho) + p(y[Ha)m(H1) |

p(y|H1)m(H1)

e The Bayes factor can be thought of as the factor by which our prior odds change

(towards the posterior odds) in the light of the data.
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Likelihoods & Evidence
Maximized Likelihood.n = 10

p-value = 0.05
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Marginal Likelihoods & Evidence
Maximized & Marginal Likelihoods

B]:w =1.73or B]:01 =0.58
Posterior Probability of H = 0.3665
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Candidate’s Formula (Besag 1989)

Alternative expression for BF based on Candidate’s Formula or Savage-Dickey ratio

BF,, - P Ho) _ mo(0|Hiy)
p(y | Hi)  mo(0[Hi)

p(y |0, Hi)w(0]H:) _p(y |0, Hi)x(0]Hi)

7o (60 Hi,y) = = p(y | H;
o0 %:y) o(y | ) Y = o )
P (316,10 (01Ho) p(y16=0)50(6)
BF, — MOy G p(y|0=10)60(0) mo(0|H1,y)
PO HIT(OH:)  p(yI0HIT(OH) 0,H;) 60(6 0| H
o (014 1y) o (A 1y) P(y 19, #1) 30(6) 7(6]H1)

e Simplifies to the ratio of the posterior to prior densities when evaluated 0 at zero
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Prior
Plots were basedona® | H; ~ N(0, 1)

e centered at value for 6 under H , (goes back to Jeffreys)
e “unit information prior” equivalent to a prior sample size is 1
e s this a“reasonable prior”?

= What happens ifn — oo?

» What happens of 7y — 07 (less informative)
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Choice of Precision

® To = 1/10
e Bayes Factorfor’HytoH ;is1.5
e Posterior Probability of H = 0.6001

* 790 =1/1000
e Bayes Factor for HytoH ;is 14.65
e Posterior Probability of Hy=0.9361
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Vague Priors & Hypothesis Testing
* Asty — Othe BF y; — coandPr(Hy |y — 1!

e Aswe use aless & less informative prior for 6 under H ; we obtain more & more
evidence for H yover H ;!

e Known as Bartlett’s Paradox - the paradox is that a seemingly non-informative prior
for @ is very informative about H!

e General problem with nested sequence of models. If we choose vague priors on the
additional parameter in the larger model we will be favoring the smaller models
under consideration!

e Similar phenomenon with increasing sample size (Lindley’s Paradox)
Bottom Line Don'’t use vague priors!

What should we use then?
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Other Options

e Place aprioron 7y
7o ~ Gamma(1/2,1/2)

e If0 | 10, Hs ~N(0,1/79) thenfy | Hhasa Cauchy(0, 1) distribution!
Recommended by Jeffreys (1961)

e no closed form expressions for marginal likelihood!
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Intrinsic Bayes Factors & Priors (Berger & Pericchi)

e Can't use improper priors under H ;

e use part of the data y(1) to update an improper prior on 6 to get a proper posterior
™0 | Hi,y(l)

e usem(0 | y(l),H;)toobtain the posterior for § based on the rest of the training data

e Calculate a Bayes Factor (avoids arbitrary normalizing constants!)

e Choice of training sample y(1)?

e Berger & Pericchi (1996) propose “averaging” over training samples intrinsic Bayes
Factors

e intrinsic prior on 6 that leads to the Intrisic Bayes Factor

Error

“tt-s:/[sta702-F23.github.io/website/ ®
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