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Conjugate Priors in Linear Regression
Regression Model (Sampling model)

Y ∣ β, ϕ ∼ N(Xβ, ϕ−1In)

Conjugate Normal-Gamma Model: factor joint prior p(β, ϕ) = p(β ∣ ϕ)p(ϕ)

β ∣ ϕ ∼ N(b0, ϕ−1Φ−1
0 ) p(β ∣ ϕ) =

|ϕΦ0|1/2

(2π)p/2
e

{− ϕ
2 (β−b0)T Φ0(β−b0)}

ϕ ∼ Gamma(v0/2, SS0/2) p(ϕ) =
1

Γ(ν0/2)
( SS0

2
)ν0/2

ϕν0/2−1e−ϕ

⇒ (β, ϕ) ∼ NG(b0, Φ0, νo, SS0)

Need to specify the 4 hyperparameters of the Normal-Gamma distribution!

hard in higher dimensions!
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Choice of Conjugate Prior
Seek default choices

Jeffreys’ prior

unit-information prior

Zellner’s g-prior

ridge regression priors

mixtures of conjugate priors

Zellner-Siow Cauchy Prior

(Bayesian) Lasso

Horseshoe

Which? Why?
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Je!reys’ Prior
Jeffreys prior is invariant to model parameterization of θ = (β, ϕ)

p(θ) ∝ |I(θ)|1/2

 is the Expected Fisher Information matrixI(θ)

I(θ) = −E[[ ∂ 2 log(L(θ))
∂θi∂θj

]]

log likelihood expressed as function of sufficient statistics

log(L(β, ϕ)) =
n

2
log(ϕ) −

ϕ

2
∥(In − Px)Y∥2 −

ϕ

2
(β − β̂)T (XT X)(β − β̂)

projection  onto the column space of PX = X(XT X)−1XT X
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Information matrix
∂ 2 log L

∂θ∂θT
=

E[
∂ 2 log L

∂θ∂θT
] = [ ]

I((β, ϕ)T ) = [ ]

⎡⎢⎣ −ϕ(XT X) −(XT X)(β − β̂)

−(β − β̂)T (XT X) − n
2

1
ϕ2

⎤⎥⎦−ϕ(XT X) 0p

0T
p − n

2
1

ϕ2

ϕ(XT X) 0p

0T
p

n
2

1
ϕ2

pJ(β, ϕ) ∝ |I((β, ϕ)T )|1/2 = |ϕXT X|1/2( n

2
1

ϕ2 )1/2

∝ ϕp/2−1|XT X|1/2

∝ ϕp/2−1

Jeffreys’ did not recommend - marginal for  dies not account for dimension ϕ p
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⎢ ⎥
Recommended Independent Je!reys Prior

Treat  and  separately (orthogonal parameterization which implies asymptoptic
independence of  and )

β ϕ
β ϕ

 and pIJ(β) ∝ |I(β)|1/2 pIJ(ϕ) ∝ |I(ϕ)|1/2

I((β, ϕ)T ) = [ ]ϕ(XT X) 0p

0T
p

n
2

1
ϕ2

pIJ(β) ∝ |ϕXT X|1/2 ∝ 1
pIJ(ϕ) ∝ ϕ−1

pIJ(β, ϕ) ∝ pIJ(β)pIJ(ϕ) = ϕ−1

Two group reference prior
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⎢ ⎥
Formal Posterior Distribution

Use Independent Jeffreys Prior pIJ(β, ϕ) ∝ pIJ(β)pIJ(ϕ) = ϕ−1

Formal Posterior Distribution

β ∣ ϕ, Y ∼ N(β̂, (XT X)−1ϕ−1)

ϕ ∣ Y ∼ Gamma((n − p)/2, ∥Y − Xβ̂∥2/2)

β ∣ Y ∼ tn−p(β̂, σ̂2(XT X)−1)

Bayesian Credible Sets  correspond to frequentist
Confidence Regions

p(β ∈ Cα ∣ Y) = 1 − α

xT β − xT β̂

√σ̂2xT (XT X)−1x
∼ tn−p

conditional on  for Bayes and conditional on  for frequentistY β
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Unit Information Prior
Unit information prior β ∣ ϕ ∼ N(β̂, n(XT X)−1/ϕ)

Based on a fraction of the likelihood p(β, ϕ) ∝ L(β, ϕ)1/n

log(p(β, ϕ) ∝
1
n

n

2
log(ϕ) −

ϕ

2
∥(In − Px)Y∥2

n
−

ϕ

2
(β − β̂)T (XT X)

n
(β − β̂)

``average information’’ in one observation is  or “unit information”ϕXT X/n

Posterior mean n
1+n β̂ + 1

1+n β̂ = β̂

Posterior Distribution

β ∣ Y, ϕ ∼ N (β̂,
n

1 + n
(XT X)−1ϕ−1)

8



10/9/23, 8:27 PMSTA 702 Fall 2023 - Lecture 12: Choice of Priors in Regression

Page 9 of 16https://sta702-f23.github.io/website/resources/slides/12-priors-regression.html?print-pdf=#/title-slide

Unit Information Prior
Advantages:

Proper

Invariant to model parameteriztion of  (next)X
Equivalent to MLE (no bias) and tighter intervals

Disadvantages

cannot represent prior beliefs;

double use of data!

no shrinkage of  with noisy data (larger variance than biased estimators)β

Exercise for the Energetic Student

What would be a “Unit information prior” for ?ϕ

What is the marginal posterior for  using both unit-information priors?β
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Invariance and Choice of Mean/Precision
the model in vector form Y ∣ β, ϕ ∼ Nn(Xβ, ϕ−1In)

What if we transform the mean  with new  matrix 

where  is  and invertible and coefficients .

Xβ = XHH −1β X
~

X = XH

H p × p
~
β = H −1β

obtain the posterior for  using  and 
~
β Y

~
X

Y ∣ ~
β, ϕ ∼ Nn( ~

X
~
β, ϕ−1In)

since  invariance suggests that the posterior for  and 
should be the same

~
X

~
β = XH

~
β = Xβ β H

~
β

plus the posterior of  and  should be the sameH −1β
~
β

With some linear algebra, show that this is true for a normal prior if  and  is  for some 

Exercise for the Energetic Student

b0 = 0 Φ0 kXT X k
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Zellner’s g-prior
Popular choice is to take  which is a special case of Zellner’s g-priork = ϕ/g

β ∣ ϕ, g ∼ N (b0,
g

ϕ
(X T X)−1)

Full conditional

β ∣ ϕ, g ∼ N ( g

1 + g
β̂ +

1
1 + g

b0,
1
ϕ

g

1 + g
(X T X)−1)

one parameter  controls shrinkageg

invariance under linear transformations of  with  or transform mean X b0 = 0
~b0 = H −1b0

often paired with the Jeffereys’ reference prior for ϕ

allows an informative mean, but keeps the same correlation structure as the MLE
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Zellner’s Blocked g-prior
Zellner also realized that different blocks might have different degrees of prior
information

Two blocks  and  with  so Fisher Information is block diagonalX1 X2 XT
1 X2 = 0

Model Y = X1α + X2β + ϵ

Priors

α ∣ ϕ ∼ N(α1,
gα

ϕ
(XT

1 X1)−1)

β ∣ ϕ ∼ N(b0,
gβ

ϕ
(XT

2 X2)−1)

Important case  corresponding to intercept with limiting case X1 = 1n gα → ∞

p(α) ∝ 1
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Potential Problems
The posterior in Jeffereys’ prior(s), the unit information prior, and Zellner’s g-priors

depend on  and the MLE (XT X)−1 β̂

If  is nearly singular (  for one or more eigenvalues), certain

elements of  or (linear combinations of ) may have huge posterior variances and
the MLEs (and posterior means) are highly unstable!

XT X = UΛUT λj ≈ 0
β β

there is no unique posterior distribution if any ! (  or non-full rank)λj = 0 p > n

Posterior Precision and Mean in conjugate prior

Φn = XT X + Φ0

bn = Φ−1(XT Y + Φ0b0)

Need a proper prior with  (OK for  )Φ0 > 0 b0 = 0
Simplest case: take  so that Φ0 = κIp Φn = XT X + κIp = U(Λ + κIp)UT > 0
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Ridge Regression
Model: Y = 1nα + Xβ + ϵ

WLOG assume that  has been centered and scaled so that X XT X = corr(X)
typically expect the intercept  to be a different order of magnitude from the other
predictors.

α

Adopt a two block prior with p(α) ∝ 1
If  is centered, X 1T

n X = 0p

Prior ) implies the  are exchangable a priori (i.e. distribution is

invariant under permuting the labels and with a common scale and mean)

β ∣ ϕ ∼ N(0b, 1
ϕκ Ip b

if different predictors have different variances, rescale  to have variance 1X
Posterior for β

β ∣ ϕ, κ, Y ∼ N ((κIp + X T X)−1X T Y ,
1
ϕ

(κIp + X T X)−1)
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Bayes Ridge Regression
Posterior mean (or mode) given  is biased, but can show that there always is a value
of  where the frequentist’s expected squared error loss is smaller for the Ridge
estimator than MLE!

κ
κ

Unfortunately the optimal choice depends on “true” !β

related to penalized maximum likelihood estimation

−
ϕ

2
(∥Y − Xβ∥2 + κ∥β∥2)

Choice of  ?κ

Cross-validation (frequentist)

Empirical Bayes? (frequentist/Bayes)

fixed a priori Bayes (and how to choose)

Should there be a common ? Or a  per variable? (or shared in a group?)κ κj
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Mixture of Conjugate Priors
can place a prior on  or  for fully Bayesκ κj

similar issue for  in the  priorsg g

often improved robustness over fixed choices of hyperparameter

may not have cloosed form posterior but sampling is still often easy!

Examples: Bayesian Lasso, Double Laplace, Horseshoe prior, mixtures of -priorsg
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