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Conjugate Priors in Linear Regression

e Regression Model (Sampling model)

Y |B,¢~N(XB,¢ 'I,)

« Conjugate Normal-Gamma Model: factor joint prior p(8, ¢) = p(B | ¢)p(¢)

|¢‘I>0 | 1/ e{—% (5—b0)T‘I’0(ﬂ—bo)}

816~ N(bo, 6712, PBIE) = o
1 SSo \ "/ vo/2—1 —
¢ ~ Gamma(vg/2,SS¢/2) p(¢) = YD) < > ) "/ * e

= (187 ¢) ~ NG(bOa @071/07550)

* Need to specify the 4 hyperparameters of the Normal-Gamma distribution!

e hard in higher dimensions!
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Choice of Conjugate Prior

Seek default choices

o Jeffreys’ prior

unit-information prior

Zellner’s g-prior

ridge regression priors

mixtures of conjugate priors
= Zellner-Siow Cauchy Prior
» (Bayesian) Lasso

» Horseshoe

Which? Why?
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Jef reys’ Prior

e Jeffreys prior is invariant to model parameterization of @ = (3, ¢)
1/2
p(8) o< [Z()|"
e 7(0)isthe Expected Fisher Information matrix

9% log(L()) ] |
00,00 ;

7(6) = —E[[

e |og likelihood expressed as function of sufficient statistics

log(L(8,¢)) = 5 log(¢) - %H(In ~PY|" - ?(ﬂ -B) (X' X)(B-B)

e projection Px = X(X?X)'X” onto the column space of X
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Information matrix

’logL | —¢(XTX)  —(XTX)(B-A)
0606" | —(B-B)"(X"X) —5
E[azlogﬁ] B [—p(X'X) 0,
00007 © | 0, ~5 5
H(XTX) o0
(B, =| gr a1 ]
i p 2 ¢?

1/2
pa(B.6) o [Z((8, 67 = [6X7X¥2(5 ) ox g7 HXTX|
x ¢p/2—1

Jeffreys’ did not recommend - marginal for ¢ dies not account for dimension p
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Recommended Independent Jeffreys Prior

e Treat B and ¢ separately (orthogonal parameterization which implies asymptoptic
independence of 3 and ¢)

« prs(B) o |Z(B)'* and prs(¢) o |Z(¢)|'/?

X'X) o,
Z((B, ¢)T) — F( O}:)r ) %#]

p1s(B) o [$XTX|"? o 1
prs(p) o< p~'
p17(8,9) < prs(B)p1s(¢) = ¢~

Two group reference prior
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Formal Posterior Distribution

e Use Independent Jeffreys Prior p7.7(8, ¢) o prs(B)prs(¢) = ¢ 1

e Formal Posterior Distribution
B, Y ~N(B,(XTX) 97"
¢ | Y ~ Gamma((n —p)/2,|Y — XB]°/2)
BIY ~t,p(B,64(XTX))

e Bayesian Credible Sets p(8 € Cy | Y) = 1 — a correspond to frequentist
Confidence Regions

T:B_XT,B
V62xT(XTX)~

~tn p

 conditional on Y for Bayes and conditional on 3 for frequentist
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Unit Information Prior
Unit information prior 8 | ¢ ~ N(8,n(XTX)"1/¢)
« Based on a fraction of the likelihood p(8, ¢) < L£(B, ¢)'/™

f ”(In - PX)Y||2 . ¢ ) (XTX) A

log(p(8, 6) oc -+ log(#) — 5" BB

« “average information” in one observation is X T X /n or “unit information”

* Posterior mean 1 B+ 1Jlrn B=pB

e Posterior Distribution

n
1+n

B|lY,$~N (B, (XTX)lqsl)
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Unit Information Prior

e Advantages:

= Proper

» |nvariant to model parameteriztion of X (next)

» Equivalent to MLE (no bias) and tighter intervals
e Disadvantages

= cannot represent prior beliefs;

= double use of data!

» no shrinkage of B with noisy data (larger variance than biased estimators)

Exercise for the Energetic Student

* What would be a “Unit information prior” for ¢?

e What is the marginal posterior for 8 using both unit-information priors?
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Invariance and Choice of Mean/Precision

e the modelinvector formY | B, ¢ ~ N, (X8, ¢ 11,)

e What if we transform the mean X8 = X HH ~!Swithnew X matrix X = XH
where H isp X pand invertible and coefficients B = H 18

e obtain the posterior for [3 usingY and X

Y |B,¢~Nu(XB,¢ ')

e since XB = XHB = X (B invariance suggests that the posterior for 8 and HB
should be the same

e plus the posterior of H_lﬂ and B should be the same

Exercise for the Energetic Student

With some linear algebra, show that this is true for a normal prior if by = 0 and ® is kX * X for some k
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Zellner's g-prior

e Popular choice is to take k = ¢ /g which is a special case of Zellner’s g-prior
N (bo, L (x7x)*
/8 | ¢7g ~ 07 ¢( )

e Full conditional

1 1 g9 o7
Bl o0~ N (Top+ Tsbu s T (X707

e one parameter g controls shrinkage

e invariance under linear transformations of X with by = 0 or transform mean
f)() = H_lbo

e often paired with the Jeffereys’ reference prior for ¢

¢ allows an informative mean, but keeps the same correlation structure as the MLE
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Zellner's Blocked g-prior

e Zellner also realized that different blocks might have different degrees of prior
information

Two blocks X1 and X5 with XfXg = 0 so Fisher Information is block diagonal
Model Y = Xja + X8 + €

e Priors
o | ¢ ~ N(au, %“(xfxn—l)
B¢~ N(by, %(ngz)_l)

Important case X1 = 1,, corresponding to intercept with limiting case go — 00

pla) x 1
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Potential Problems

e The posterior in Jeffereys’ prior(s), the unit information prior, and Zellner’s g-priors
depend on (X?X) ™! and the MLE B

e If XTX = UAU7T isnearly singular (A; =~ 0 for one or more eigenvalues), certain

elements of S or (linear combinations of 3) may have huge posterior variances and
the MLEs (and posterior means) are highly unstable!

e thereis nounique posterior distribution if any )\j = 0! (p > mor non-full rank)

e Posterior Precision and Mean in conjugate prior

&, = XX+,
b, = & (XTY + &¢by)

e Need a proper prior with €y > 0 (OKforby = 0)
e Simplest case: take &g = kI, sothat &, = XX + kI, = U(A + xI,)UT >0
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Ridge Regression

Model: Y =1,a+ X3 + €

WLOG assume that X has been centered and scaled so that X7 X = corr(X)

typically expect the intercept a to be a different order of magnitude from the other
predictors.

= Adopt a two block prior with p(a) o< 1
» |f X is centered, 1£X =0,

Prior B | ¢ ~ N(0, #Ip) implies the b are exchangable a priori (i.e. distribution is
invariant under permuting the labels and with a common scale and mean)

» if different predictors have different variances, rescale X to have variance 1

Posterior for 8

1

IB | ¢7 Ii,Y ~N ((KIP+XTX)1XTY3 ¢

(kI, + XTX)l)
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Bayes Ridge Regression

Posterior mean (or mode) given k is biased, but can show that there always is a value
of kK where the frequentist’s expected squared error loss is smaller for the Ridge
estimator than MLE!

Unfortunately the optimal choice depends on “true” B!

related to penalized maximum likelihood estimation

¢ 2 2
~2(IY ~ X8I + s8I
Choiceof k?

» Cross-validation (frequentist)
= Empirical Bayes? (frequentist/Bayes)
» fixed a priori Bayes (and how to choose)

Should there be acommon k? Or a & ; per variable? (or shared in a group?)
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Mixture of Conjugate Priors

e canplace a prior on k or & ; for fully Bayes

e similarissue for ginthe g priors
e often improved robustness over fixed choices of hyperparameter
e may not have cloosed form posterior but sampling is still often easy!

e Examples: Bayesian Lasso, Double Laplace, Horseshoe prior, mixtures of g-priors
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