Lecture 12: Choice of Priors in Regression

STA702

Merlise Clyde
Duke University

Conjugate Priors in Linear Regression

• Regression Model (Sampling model)

$$\mathbf{Y} \mid oldsymbol{eta}, \phi \sim \mathsf{N}(\mathbf{X}oldsymbol{eta}, \phi^{-1}\mathbf{I}_n)$$

ullet Conjugate Normal-Gamma Model: factor joint prior $p(oldsymbol{eta},\phi)=p(oldsymbol{eta}\mid\phi)p(\phi)$

$$eta \mid \phi \sim \mathsf{N}(\mathbf{b}_0,\phi^{-1}\mathbf{\Phi}_0^{-1}) \qquad p(oldsymbol{eta}\mid \phi) = rac{|\phi\mathbf{\Phi}_0|^{1/2}}{(2\pi)^{p/2}}e^{\left\{-rac{\phi}{2}(oldsymbol{eta}-\mathbf{b}_0)^T\mathbf{\Phi}_0(oldsymbol{eta}-\mathbf{b}_0)
ight\}} \ \phi \sim \mathsf{Gamma}(v_0/2,\mathsf{SS}_0/2) \qquad p(\phi) = rac{1}{\Gamma(
u_0/2)}igg(rac{\mathsf{SS}_0}{2}igg)^{
u_0/2}\phi^{
u_0/2-1}e^{-rac{\phi}{2}(oldsymbol{eta}-\mathbf{b}_0)^T\mathbf{\Phi}_0(oldsymbol{eta}-\mathbf{b}_0)} \ \Rightarrow (oldsymbol{eta},\phi) \sim \mathsf{NG}(\mathbf{b}_0,\mathbf{\Phi}_0,
u_0,\mathsf{SS}_0)$$

- Need to specify the 4 hyperparameters of the Normal-Gamma distribution!
- hard in higher dimensions!

Choice of Conjugate Prior

Seek default choices

- Jeffreys' prior
- unit-information prior
- Zellner's g-prior
- ridge regression priors
- mixtures of conjugate priors
 - Zellner-Siow Cauchy Prior
 - (Bayesian) Lasso
 - Horseshoe

Which? Why?

Jeffreys' Prior

• Jeffreys prior is invariant to model parameterization of $m{ heta}=(m{eta},\phi)$

$$p(oldsymbol{ heta}) \propto |\mathcal{I}(oldsymbol{ heta})|^{1/2}$$

• $\mathcal{I}(\boldsymbol{\theta})$ is the Expected Fisher Information matrix

$$\mathcal{I}(heta) = -\mathsf{E}[\left[rac{\partial^2 \log(\mathcal{L}(oldsymbol{ heta}))}{\partial heta_i \partial heta_j}
ight]]$$

• log likelihood expressed as function of sufficient statistics

$$\log(\mathcal{L}(oldsymbol{eta},\phi)) = rac{n}{2} \log(\phi) - rac{\phi}{2} \|(\mathbf{I}_n - \mathbf{P_x})\mathbf{Y}\|^2 - rac{\phi}{2} (oldsymbol{eta} - \hat{oldsymbol{eta}})^T (\mathbf{X}^T \mathbf{X}) (oldsymbol{eta} - \hat{oldsymbol{eta}})$$

• projection $\mathbf{P}_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ onto the column space of \mathbf{X}

Information matrix

$$egin{aligned} rac{\partial^2 \log \mathcal{L}}{\partial oldsymbol{ heta} \partial oldsymbol{ heta} \nabla oldsymbol{ heta} (oldsymbol{eta} \partial oldsymbol{ heta} \partial oldsymbol{ heta} \partial oldsymbol{ heta} \partial oldsymbol{ heta} \nabla oldsymbol{ heta} (oldsymbol{ heta} \partial oldsymbol{ h$$

$$p_J(oldsymbol{eta},\phi) \propto |\mathcal{I}((oldsymbol{eta},\phi)^T)|^{1/2} = |\phi \mathbf{X}^T \mathbf{X}|^{1/2} igg(rac{n}{2} rac{1}{\phi^2}igg)^{1/2} \propto \phi^{p/2-1} |\mathbf{X}^T \mathbf{X}|^{1/2} \ \propto \phi^{p/2-1}$$

Jeffreys' did not recommend - marginal for ϕ dies not account for dimension p

Recommended Independent Jeffreys Prior

- Treat β and ϕ separately (orthogonal parameterization which implies asymptoptic independence of β and ϕ)
- $p_{IJ}(oldsymbol{eta}) \propto |\mathcal{I}(oldsymbol{eta})|^{1/2}$ and $p_{IJ}(\phi) \propto |\mathcal{I}(\phi)|^{1/2}$

$$egin{aligned} \mathcal{I}((oldsymbol{eta},\phi)^T) &= egin{bmatrix} \phi(\mathbf{X}^T\mathbf{X}) & \mathbf{0}_p \ \mathbf{0}_p^T & rac{n}{2}rac{1}{\phi^2} \end{bmatrix} \ p_{IJ}(oldsymbol{eta}) &\propto |\phi\mathbf{X}^T\mathbf{X}|^{1/2} \propto 1 \ p_{IJ}(\phi) &\propto \phi^{-1} \ p_{IJ}(eta,\phi) &\propto p_{IJ}(oldsymbol{eta}) p_{IJ}(\phi) &= \phi^{-1} \end{aligned}$$

Two group reference prior

Formal Posterior Distribution

- Use Independent Jeffreys Prior $p_{IJ}(eta,\phi) \propto p_{IJ}(oldsymbol{eta}) p_{IJ}(\phi) = \phi^{-1}$
- Formal Posterior Distribution

$$oldsymbol{eta} \mid \phi, \mathbf{Y} \sim \mathsf{N}(\hat{oldsymbol{eta}}, (\mathbf{X}^T\mathbf{X})^{-1}\phi^{-1}) \ \phi \mid \mathbf{Y} \sim \mathsf{Gamma}((n-p)/2, \|\mathbf{Y} - \mathbf{X}\hat{oldsymbol{eta}}\|^2/2) \ oldsymbol{eta} \mid \mathbf{Y} \sim t_{n-p}(\hat{oldsymbol{eta}}, \hat{\sigma}^2(\mathbf{X}^T\mathbf{X})^{-1})$$

• Bayesian Credible Sets $p(m{eta} \in C_lpha \mid \mathbf{Y}) = 1 - lpha$ correspond to frequentist Confidence Regions

$$rac{\mathbf{x}^Toldsymbol{eta} - \mathbf{x}^T\hat{oldsymbol{eta}}}{\sqrt{\hat{\sigma}^2\mathbf{x}^T(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}}} \sim t_{n-p}$$

ullet conditional on ${f Y}$ for Bayes and conditional on ${m eta}$ for frequentist

Unit Information Prior

Unit information prior $m{eta} \mid \phi \sim \mathsf{N}(\hat{m{eta}}, n(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

• Based on a fraction of the likelihood $p(m{eta},\phi) \propto \mathcal{L}(m{eta},\phi)^{1/n}$

$$\log(p(oldsymbol{eta},\phi) \propto rac{1}{n}rac{n}{2}\log(\phi) - rac{\phi}{2}rac{\|(\mathbf{I}_n - \mathbf{P_x})\mathbf{Y}\|^2}{n} - rac{\phi}{2}(oldsymbol{eta} - \hat{oldsymbol{eta}})^Trac{(\mathbf{X}^T\mathbf{X})}{n}(oldsymbol{eta} - \hat{oldsymbol{eta}})$$

- ullet ``average information'' in one observation is $\phi \mathbf{X}^T \mathbf{X}/n$ or "unit information"
- Posterior mean $rac{n}{1+n}\hat{m{eta}}+rac{1}{1+n}\hat{m{eta}}=\hat{m{eta}}$
- Posterior Distribution

$$oldsymbol{eta} \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(\hat{oldsymbol{eta}}, rac{n}{1+n} (\mathbf{X}^T\mathbf{X})^{-1} \phi^{-1}
ight)$$

Unit Information Prior

- Advantages:
 - Proper
 - Invariant to model parameteriztion of **X** (next)
 - Equivalent to MLE (no bias) and tighter intervals
- Disadvantages
 - cannot represent prior beliefs;
 - double use of data!
 - no shrinkage of β with noisy data (larger variance than biased estimators)
 - 0

Exercise for the Energetic Student

- What would be a "Unit information prior" for ϕ ?
- What is the marginal posterior for β using both unit-information priors?

Invariance and Choice of Mean/Precision

- the model in vector form $Y \mid \beta, \phi \sim \mathsf{N}_n(X\beta, \phi^{-1}I_n)$
- What if we transform the mean $X\beta=XHH^{-1}\beta$ with new X matrix $\tilde{X}=XH$ where H is $p\times p$ and invertible and coefficients $\tilde{\beta}=H^{-1}\beta$.
- obtain the posterior for \tilde{eta} using Y and \tilde{X}

$$Y \mid ilde{eta}, \phi \sim \mathsf{N}_n(ilde{X} ilde{eta}, \phi^{-1}I_n)$$

- since $\tilde{X}\tilde{\beta}=XH\tilde{\beta}=X\beta$ invariance suggests that the posterior for β and $H\tilde{\beta}$ should be the same
- plus the posterior of $H^{-1}eta$ and $ilde{eta}$ should be the same

Exercise for the Energetic Student

With some linear algebra, show that this is true for a normal prior if $b_0=0$ and Φ_0 is kX^TX for some k

Zellner's g-prior

ullet Popular choice is to take $k=\phi/g$ which is a special case of Zellner's g-prior

$$eta \mid \phi, g \sim \mathsf{N}\left(\mathbf{b}_0, rac{g}{\phi}(X^TX)^{-1}
ight)$$

Full conditional

$$eta \mid \phi, g \sim \mathsf{N}\left(rac{g}{1+g}\hat{eta} + rac{1}{1+g}\mathbf{b}_0, rac{1}{\phi}rac{g}{1+g}(X^TX)^{-1}
ight)$$

- one parameter g controls shrinkage
- invariance under linear transformations of ${f X}$ with ${f b}_0=0$ or transform mean ${f ilde b}_0=H^{-1}{f b}_0$
- often paired with the Jeffereys' reference prior for ϕ
- allows an informative mean, but keeps the same correlation structure as the MLE

Zellner's Blocked g-prior

- Zellner also realized that different blocks might have different degrees of prior information
- ullet Two blocks ${f X}_1$ and ${f X}_2$ with ${f X}_1^T{f X}_2=0$ so Fisher Information is block diagonal
- ullet Model $\mathbf{Y} = \mathbf{X}_1 oldsymbol{lpha} + \mathbf{X}_2 oldsymbol{eta} + oldsymbol{\epsilon}$
- Priors

$$oldsymbol{lpha} \mid \phi \sim \mathsf{N}(oldsymbol{lpha}_1, rac{g_{oldsymbol{lpha}}}{\phi} (\mathbf{X}_1^T \mathbf{X}_1)^{-1}) \ oldsymbol{eta} \mid \phi \sim \mathsf{N}(\mathbf{b}_0, rac{g_{oldsymbol{eta}}}{\phi} (\mathbf{X}_2^T \mathbf{X}_2)^{-1})$$

ullet Important case ${f X}_1={f 1}_n$ corresponding to intercept with limiting case $g_{m lpha} o\infty$

$$p(\boldsymbol{\alpha}) \propto 1$$

Potential Problems

- The posterior in Jeffereys' prior(s), the unit information prior, and Zellner's g-priors depend on $(\mathbf{X}^T\mathbf{X})^{-1}$ and the MLE $\hat{\boldsymbol{\beta}}$
- If $\mathbf{X}^T\mathbf{X} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^T$ is nearly singular ($\lambda_j \approx 0$ for one or more eigenvalues), certain elements of β or (linear combinations of β) may have huge posterior variances and the MLEs (and posterior means) are highly unstable!
- ullet there is no unique posterior distribution if any $\lambda_j=0$! (p>n or non-full rank)
- Posterior Precision and Mean in conjugate prior

$$egin{aligned} oldsymbol{\Phi}_n &= \mathbf{X}^T \mathbf{X} + oldsymbol{\Phi}_0 \ oldsymbol{\mathbf{b}}_n &= oldsymbol{\Phi}^{-1} (\mathbf{X}^T \mathbf{Y} + oldsymbol{\Phi}_0 oldsymbol{\mathbf{b}}_0) \end{aligned}$$

- Need a proper prior with ${f \Phi}_0>0$ (OK for ${f b}_0=0$)
- Simplest case: take ${f \Phi}_0=\kappa {f I}_p$ so that ${f \Phi}_n={f X}^T{f X}+\kappa {f I}_p={f U}({f \Lambda}+\kappa {f I}_p){f U}^T>0$

Ridge Regression

Model: $\mathbf{Y} = \mathbf{1}_n \alpha + \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\epsilon}$

- ullet WLOG assume that ${f X}$ has been centered and scaled so that ${f X}^T{f X}={\sf corr}({f X})$
- typically expect the intercept α to be a different order of magnitude from the other predictors.
 - Adopt a two block prior with $p(\alpha) \propto 1$
 - If \mathbf{X} is centered, $\mathbf{1}_n^T\mathbf{X} = \mathbf{0}_p$
- Prior $\boldsymbol{\beta} \mid \phi \sim \mathsf{N}(\mathbf{0}_b, \frac{1}{\phi\kappa}\mathbf{I}_p)$ implies the **b** are exchangable *a priori* (i.e. distribution is invariant under permuting the labels and with a common scale and mean)
 - ullet if different predictors have different variances, rescale ${f X}$ to have variance 1
- Posterior for β

$$oldsymbol{eta} \mid \phi, \kappa, \mathbf{Y} \sim \mathsf{N}\left((\kappa I_p + X^T X)^{-1} X^T Y, rac{1}{\phi}(\kappa I_p + X^T X)^{-1}
ight)$$

Bayes Ridge Regression

- Posterior mean (or mode) given κ is biased, but can show that there **always** is a value of κ where the frequentist's expected squared error loss is smaller for the Ridge estimator than MLE!
- Unfortunately the optimal choice depends on "true" β !
- related to penalized maximum likelihood estimation

$$-rac{\phi}{2}ig(\|\mathbf{Y}-\mathbf{X}oldsymbol{eta}\|^2+\kappa\|oldsymbol{eta}\|^2ig)$$

- Choice of κ ?
 - Cross-validation (frequentist)
 - Empirical Bayes? (frequentist/Bayes)
 - fixed a priori Bayes (and how to choose)
- Should there be a common κ ? Or a κ_i per variable? (or shared in a group?)

Mixture of Conjugate Priors

- can place a prior on κ or κ_j for fully Bayes
- similar issue for *g* in the *g* priors
- often improved robustness over fixed choices of hyperparameter
- may not have cloosed form posterior but sampling is still often easy!
- Examples: Bayesian Lasso, Double Laplace, Horseshoe prior, mixtures of g-priors