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Introduction to Missing Data
Missing data/nonresponse is fairly common in real data.

Failure to respond to survey question

Subject misses some clinic visits out of all possible

Only subset of subjects asked certain questions

posterior computation usually depends on the data through , which can
be difficult to compute (at least directly) when some of the  (multivariate ) or 

values are missing.

p(Y ∣ X, θ)
yi Y xT

i

Most software packages often throw away all subjects with incomplete data (can
lead to bias and precision loss).

Some individuals impute missing values with a mean or some other fixed value
(ignores uncertainty).

Imputing missing data is actually quite natural in the Bayesian context.
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Missing data mechanisms
Data are said to be missing completely at random (MCAR) if the reason for
missingness does not depend on the values of the observed data or missing data.

For example, suppose

you handed out a double-sided survey questionnaire of 20 questions to a sample
of participants;

questions 1-15 were on the first page but questions 16-20 were at the back; and

some of the participants did not respond to questions 16-20.

Then, the values for questions 16-20 for those people who did not respond would be
MCAR if they simply did not realize the pages were double-sided; they had no
reason to ignore those questions.

This is rarely plausible in practice!
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Missing Data Mechanisms
Data are said to be missing at random (MAR) if, conditional on the values of the
observed data, the reason for missingness does not depend on the missing data.

Using our previous example, suppose

questions 1-15 include demographic information such as age and education;

questions 16-20 include income related questions; and

once again, some participants did not respond to questions 16-20.

Then, the values for questions 16-20 for those people who did not respond would be
MAR if younger people are more likely not to respond to those income related
questions than old people, where age is observed for all participants. (missingness
reason must be independent of income)

This is the most commonly assumed mechanism in practice!
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Missing data mechanisms
Data are said to be missing not at random (MNAR or NMAR) if the reason for
missingness depends on the actual values of the missing (unobserved) data.

suppose again that

questions 1-15 include demographic information such as age and education;

questions 16-20 include income related questions; and

once again, some of the participants did not respond to questions 16-20.

Then, the values for questions 16-20 for those people who did not respond would be
MNAR if people who earn more money are less likely to respond to those income
related questions than those with lower incomes.

This is usually the case in real data, but analysis can be complex!
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Multivariate Formulation
Consider the multivariate data scenario with , where 

, for .
Yi = (Y1, … , Yn)T

Yi = (Yi1, … , Yip)T i = 1, … , n

For now, we will assume the multivariate normal model as the sampling model, so
that each  dimensional .p Yi = (Yi1, … , Yip)T ∼ Np(θ, Σ)

p(Yi ∣ θ, Σ) =
|Σ|−1/2

(2π)p/2
exp {−

1
2

(Y − θ)T Σ−1(Y − θ)}
Suppose now that  contains missing values.Y

We can separate  into the observed and missing parts so that for for each
individual,

Y

Yi = (Yi,obs, Yi,mis)
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Mathematical Formulation
Let

 index variables (where  already indexes individuals),j i

 when  is missing,rij = 1 yij

 when  is observed.rij = 0 yij

Here,  is known as the missingness indicator of variable  for person .rij j i

Also, let

 be the vector of missing indicators for person .Ri = (ri1, … , rip)T i

 be the matrix of missing indicators for everyone.R = (R1, … , Rn)

 be the set of parameters associated with .ψ R

Assume  and  are distinct.ψ (θ, Σ)
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Mathematical Formulation
MCAR:

p(R|Y , θ, Σ, ψ) = p(R|ψ)

MAR:

p(R|Y , θ, Σ, ψ) = p(R|Yobs, ψ)

MNAR:

p(R|Y , θ, Σ, ψ) = p(R|Yobs, Ymis, ψ)
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Implications for Likelihood Function
Each type of mechanism has a different implication on the likelihood of the observed
data , and the missing data indicator .Yobs R

Without missingness in , the likelihood of the observed data isY

p(Yobs|θ, Σ)

With missingness in , the likelihood of the observed data is insteadY

p(Yobs, R|θ, Σ, ψ) = ∫ p(R|Yobs, Ymis, ψ) ⋅ p(Yobs, Ymis|θ, Σ)dYmis

Since we do not actually observe , we would like to be able to integrate it out so
we don’t have to deal with it and infer  using only the observed data.

Ymis

(θ, Σ)
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Likelihood function: MAR
Focus on MAR

p(Yobs, R|θ, Σ, ψ) = ∫ p(R|Yobs, Ymis, ψ) ⋅ p(Yobs, Ymis|θ, Σ)dYmis

= ∫ p(R|Yobs, ψ) ⋅ p(Yobs, Ymis|θ, Σ)dYmis

= p(R|Yobs, ψ) ⋅ ∫ p(Yobs, Ymis|θ, Σ)dYmis

= p(R|Yobs, ψ) ⋅ p(Yobs|θ, Σ).

For inference on , we only need  in the likelihood function for
inference .

(θ, Σ) p(Yobs|θ, Σ)
(θ, Σ)

Still is hard, as we need marginal model!
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Bayesian Inference with Missing Data
For posterior sampling for most models (especially multivariate models), sampling is
easier with complete data ’s to update the parameters.Y

Think of the missing data as latent variables and sample from the posterior
predictive distribution of the missing data conditional on the observed data and
parameters:

p(Ymis|Yobs, θ, Σ) ∝
n

∏
i=1

p(Yi,mis|Yi,obs, θ, Σ).

In the case of the multivariate normal model, each  is just a

normal distribution, and we can leverage results on conditional distributions for
normal models.

p(Yi,mis|Yi,obs, θ, Σ)
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Model for Missing Data
Rewrite as  in block formYi

Yi = ( ) ∼ Np [( ), ( )],
Yi,mis

Yi,obs

θ1

θ2

Σ11 Σ12

Σ21 Σ22

Missing data has a conditional

Yi,mis|Yi,obs = yi,obs ∼ N (θ1 + Σ12Σ−1
22 (yi,obs − θ2), Σ11 − Σ12Σ−1

22 Σ21).

multivariate normal distribution (or univariate normal distribution if  only has one
missing entry)

Yi

This sampling technique actually encodes MAR since the imputations for 
depend on the .

Ymis

Yobs
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Semi-Conjugate Prior
We need prior distributions for  and θ Σ
Multivariate Normal Prior for θ ∼ Np(µ0, Λ−1

0 )

Analogous to the univariate case, the inverse-Wishart distribution is the
corresponding conditionally conjugate prior for  (multivariate generalization of
the inverse-gamma).

Σ

A random variable , where  is positive definite and , has

pdf

Σ ∼ IWp(η0, S−1
0 ) Σ p × p

p(Σ) ∝ |Σ|
−(η0+p+1)

2 exp {−
1
2

tr(S0Σ−1)}
 is the “degrees of freedom”, andη0 > p − 1

 is a  positive definite matrix.S0 p × p
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Mean
For this distribution, , for .E[Σ] = 1

η0−p−1 S0 η0 > p + 1

If we are very confident in a prior guess , for , then we might setΣ0 Σ
, the degrees of freedom to be very large, andη0

.S0 = (η0 − p − 1)Σ0

, and  is tightly

(depending on the value of ) centered around .

E[Σ] = 1
η0−p−1 S0 = 1

η0−p−1 (η0 − p − 1)Σ0 = Σ0 Σ
η0 Σ0

If we are not at all confident but we still have a prior guess , we might setΣ0

, so that the  is finite.η0 = p + 2 E[Σ] = 1
η0−p−1 S0

S0 = Σ0
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Alternatives
Jeffreys prior (improper limiting case)

unit-information (data dependent)

 Objective Bayesian Analysis
for the Multivariate Normal Model
Sun, D. and Berger, J.O (2006)

 The Matrix-F Prior for
Estimating and Testing Covariance Matrices.
Mulder, J. Pericchi, L.R. (2018)
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Wishart distribution
Just as we had with the gamma and inverse-gamma relationship in the univariate
case, we can also work in terms of the Wishart distribution (multivariate
generalization of the gamma) instead.

The Wishart distribution provides a conditionally-conjugate prior for the precision
matrix  in a multivariate normal model.Σ−1

if , then .Σ ∼ IWp(η0, S0) Φ = Σ−1 ∼ Wp(η0, S−1
0 )

A random variable , where  has dimension , has pdfΦ ∼ Wp(η0, S−1
0 ) Φ (p × p)

f(Φ)∝|Φ|
η0−p−1

2 exp {−
1
2

tr(S0Φ)}.

Here, .E[Φ] = η0S0
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Conditional posterior for Σ
Yi ∣ θ, Σ ind∼ N(θ, Σ)

Σ ∼ IWp(η0, S−1
0 )

θ ∼ N(µ0, Ψ−1
0 )

The conditional posterior (full conditional) , is thenΣ ∣ θ, Y

Σ ∣ θ, Y ∼ IWp η0 + n, (S0 +
n

∑
i=1

(Yi − θ)(Yi − θ)T )−1⎛⎜⎝ ⎞⎟⎠posterior sample size η0 + n

posterior sum of squares S0 + ∑n
i=1(Yi − θ)(Yi − θ)T
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⎜ ⎟Posterior Derivation
The conditional posterior (full conditional) , isΣ ∣ θ, Y

π(Σ ∣ θ, Y ) ∝ p(Σ) ⋅ p(Y ∣ θ, Σ)

∝ |Σ|
−(η0+p+1)

2 exp {−
1
2

tr(S0Σ−1)} ⋅
n∏

i=1

|Σ|− 1
2exp {−

1
2

[(Yi − θ)T Σ−1(Yi

Σ ∣ θ, Y ∼ IWp η0 + n, (S0 +
n∑

i=1

(Yi − θ)(Yi − θ)T )−1⎛⎜⎝ ⎞⎟⎠ 18
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⎜ ⎟⎜ ⎟Gibbs sampler with missing data
At iteration , do the followings + 1

1. Sample  from its multivariate normal full conditional θ(s+1)

p(θ(s+1)|Yobs, Y (s)
mis, Σ(s))

2. Sample  from its inverse-Wishart full conditional Σ(s+1)

p(Σ(s+1)|Yobs, Y (s)
mis, θ(s+1))

3. For each , with at least one “1” value in the missingness indicator vector

, sample  from the full conditional

i = 1, … , n

Ri Y (s+1)
i,mis

Y (s+1)
i,mis |Yi,obs, θ(s+1), Σ(s+1) ∼ N (θ

(s+1)
1 + Σ(s+1)

12 Σ(s+1)
22

−1
(Yi,obs − θ

(s+1)
2 ),

Σ(s+1)
11 − Σ(s+1)

12 Σ(s+1)
22

−1
Σ(s+1)

21 )

derived from the original sampling model but with the updated parameters, 

.Y (s+1)
i = (Yi,obs, Y (s+1)

i,mis )T ∼ Np(θ(s+1), Σ(s+1))
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⎜ ⎟
Reading example from Ho! with missing
data
      pretest posttest
 [1,]      59       77
 [2,]      43       39
 [3,]      34       46
 [4,]      32       NA
 [5,]      NA       38
 [6,]      38       NA
 [7,]      55       NA
 [8,]      67       86
 [9,]      64       77
[10,]      45       60
[11,]      49       50
[12,]      72       59
  pretest  posttest 
0.1363636 0.2272727 
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MCMC Summary for Σ
Iterations = 1:20000
Thinning interval = 1 
Number of chains = 1 
Sample size per chain = 20000 

1. Empirical mean and standard deviation for each variable,
   plus standard error of the mean:

          Mean    SD Naive SE Time-series SE
sigma_11 194.0 63.08   0.4460         0.4947
sigma_12 152.1 60.75   0.4295         0.4665
sigma_21 152.1 60.75   0.4295         0.4665
sigma_22 248.7 83.70   0.5918         0.6884

2. Quantiles for each variable:

           2.5%   25%   50%   75% 97.5%
sigma_11 106.45 149.8 182.4 224.1 349.8
sigma_12  64.04 109.8 142.3 182.8 299.2
sigma_21  64.04 109.8 142.3 182.8 299.2
sigma_22 132.50 190.3 233.4 289.5 456.1
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Compare to inference from full data
With missing data:

         theta_1  theta_2
Min.    30.45459 38.29322
1st Qu. 43.65988 51.96991
Median  45.60829 54.19592
Mean    45.63192 54.20408
3rd Qu. 47.61896 56.48918
Max.    58.81206 70.49105

Based on true data:

         theta_1  theta_2
Min.    34.88365 37.80999
1st Qu. 45.29473 51.47834
Median  47.28229 53.65172
Mean    47.26301 53.64100
3rd Qu. 49.21423 55.81819
Max.    60.94924 69.92354

Very similar for the most part.
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Compare to inference from full data
With missing data:

        sigma_11  sigma_12  sigma_21  sigma_22
Min.     64.0883 -20.39204 -20.39204  82.55346
1st Qu. 149.8338 109.84218 109.84218 190.25962
Median  182.4496 142.34686 142.34686 233.43312
Mean    193.9803 152.12898 152.12898 248.67527
3rd Qu. 224.0994 182.75082 182.75082 289.47663
Max.    734.8704 668.77332 668.77332 981.99916

Based on true data:

        sigma_11  sigma_12  sigma_21  sigma_22
Min.     76.4661 -38.75561 -38.75561  93.65776
1st Qu. 157.5870 113.32529 113.32529 203.69192
Median  190.6578 145.08962 145.08962 246.08696
Mean    201.9547 155.20374 155.20374 260.11361
3rd Qu. 233.5809 186.36991 186.36991 300.70840
Max.    664.8241 577.99100 577.99100 947.39333

Also very similar. A bit more uncertainty in dimension of  because we have more
missing data there.

Yi2
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Posterior distribution of the mean
24
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Missing data vs predictions for new
observations

How about predictions for completely new observations?

That is, suppose your original dataset plus sampling model is 
, .yi = (yi,1, yi,2)T ∼ N2(θ, Σ) i = 1, … , n

Suppose now you have  new observations with  values but no .n⋆ y⋆
2 y⋆

1

How can we predict  given , for ?y⋆
i,1 y⋆

i,2 i = 1, … , n⋆

Well, we can view this as a “train  test” prediction problem rather than a missing
data problem on an original data.

→

25
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Missing data vs predictions for new
observations

That is, given the posterior samples of the parameters, and the test values for ,

draw from the posterior predictive distribution of 
.

y⋆
i2

(y⋆
i,1|y⋆

i,2, {(y1,1, y1,2), … , (yn,1, yn,2)})

To sample from this predictive distribution, think of compositional sampling.

for each posterior sample of , sample from , which is just from

the form of the sampling distribution.

(θ, Σ) (yi,1|yi,2, θ, Σ)

In this case,  is just a normal distribution derived from 

, based on the conditional normal formula.

(yi,1|yi,2, θ, Σ)
(yi,1, yi,2|θ, Σ)

No need to incorporate the prediction problem into your original Gibbs sampler!
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MNAR Likelihood function:
For MNAR, we have:

p(Yobs, R|θ, Σ, ψ) = ∫ p(R|Yobs, Ymis, ψ) ⋅ p(Yobs, Ymis|θ, Σ)dYmis

The likelihood under MNAR cannot simplify any further.

In this case, we cannot ignore the missing data when making inferences about 
.

(θ, Σ)

We must include the model for  and also infer the missing data .R Ymis

So how can we tell the type of mechanism we are dealing with?

In general, we don’t know!!!

Rare that data are MCAR (unless planned beforehand); more likely that data are
MNAR or MNAR.
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