Lecture 7: MCMC Diagnostics & Adaptive Metropolis

STA702

Merlise Clyde Duke University

Q0

Example from Last Class

• Marginal Likelihood

$$\mathcal{L}(\mu, \sigma^2, \sigma_\mu^2) \propto (\sigma^2 + \sigma_\mu^2)^{-n/2} \exp\left\{-rac{1}{2}rac{\sum_{i=1}^n (y_i - \mu)^2}{\sigma^2 + \sigma_\mu^2}
ight\}$$

- Priors with $\sigma^2=1$: $p(\mu)\propto 1$ and $\sigma_\mu\sim {\sf Cauchy}^+(0,1)$ independent of μ
- Symmetric proposal for μ and $\sigma_{ au}$
- Independent normals centered at current values of μ and σ_{μ} with covariance $\frac{2.38^2}{d}$ Cov (θ) where d = 2 (the dimension of θ)
- $\delta^2 = 2.38^2/d$ optimal for multivariate normal target Roberts, Gelman, and Gilks (1997) with acceptance rate ranging from 40% to 23.4% (as $d \to \infty$)

Convergence diagnostics

- Diagnostics available to help decide on number of burn-in & collected samples.
- Note: no definitive tests of convergence but you should do as many diagnostics as you can, on all parameters in your model.
- With "experience", visual inspection of trace plots perhaps most useful approach.
- There are a number of useful automated tests in R.
- CAUTION: diagnostics cannot guarantee that a chain has converged, but they can indicate it has not converged.

Diagnostics in R

- The most popular package for MCMC diagnostics in R is coda.
- coda uses a special MCMC format so you must always convert your posterior matrix into an MCMC object.
- For the example, we have the following in R.

```
1 #library(coda)
```

```
2 theta.mcmc <- mcmc(theta,start=1) #no burn-in (simple problem!)</pre>
```

Diagnostics in R

```
1 summary(theta.mcmc)
```

```
Iterations = 1:10000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000
```

1. Empirical mean and standard deviation for each variable, plus standard error of the mean:

	Mean	SD	Naive SE	Time-series SE
mu	-0.07977	0.1046	0.001046	0.002839
sigma_mu	0.17550	0.1273	0.001273	0.004397

? Augentilag for oach warishla.

- The naive SE is the **standard error of the mean**, which captures simulation error of the mean rather than the posterior uncertainty.
- The time-series SE adjusts the naive SE for autocorrelation.

Effective Sample Size

- The effective sample size translates the number of MCMC samples S into an equivalent number of independent samples.
- It is defined as

$$\mathrm{ESS} = rac{S}{1+2\sum_k
ho_k},$$

- S is the sample size and ho_k is the lag k autocorrelation.
- For our data, we have

• So our 10,000 samples are equivalent to 1356.6 independent samples for μ and 838.3 independent samples for σ_{μ} .

Trace plot for mean

Density of var1

Trace plot for σ_{μ}

OK (be careful of scaling in plots!)

Autocorrelation

- Another way to evaluate convergence is to look at the autocorrelation between draws of our Markov chain.
- The lag k autocorrelation, ρ_k , is the correlation between each draw and its $k {\rm th}$ lag, defined as

$$ho_k = rac{\sum_{s=1}^{S-k}(heta_s-ar{ heta})(heta_{s+k}-ar{ heta})}{\sum_{s=1}^{S-k}(heta_s-ar{ heta})^2}$$

- We expect the autocorrelation to decrease as k increases.
- If autocorrelation remains high as k increases, we have slow mixing due to the inability of the sampler to move around the space well.

Autocorrelation for mean

So-So

Autocorrelation for variance

worse

Gelman-Rubin

Gelman & Rubin suggested a diagnostic ${\cal R}$ based on taking separate chains with dispersed initial values to test convergence

Gelman-Rubin Diagnostic

- Run m > 2 chains of length 2S from overdispersed starting values.
- Discard the first S draws in each chain.
- Calculate the pooled within-chain variance W and between-chain variance B.

$$R = \frac{\frac{S-1}{S}W + \frac{1}{S}B}{W}$$

- numerator and denominator are both unbiased estimates of the variance if the two chains have converged
 - otherwise W is an underestimate (hasn't explored enough)
 - numerator will overestimate as B is too large (overdispersed starting points)
- As $S
 ightarrow \infty$ and B
 ightarrow 0, R
 ightarrow 1
- version in R is slightly different

Gelman-Rubin Diagnostic

```
1 theta.mcmc = mcmc.list(mcmc(theta1, start=5000), mcmc(theta2, star
2 gelman.diag(theta.mcmc)
```

Potential scale reduction factors:

Point est. Upper C.I. mu 1 1 sigma_mu 1 1

Multivariate psrf

1

- Values of R>1.1 suggest lack of convergence
- Looks OK
- See also gelman.plot

Geweke statistic

- Geweke proposed taking two non-overlapping parts of a single Markov chain (usually the first 10% and the last 50%) and comparing the mean of both parts, using a difference of means test
- The null hypothesis would be that the two parts of the chain are from the same distribution.
- The test statistic is a z-score with standard errors adjusted for autocorrelation, and if the p-value is significant for a variable, you need more draws.
- Output in R is the Z score

Geweke Diagnostic

```
1 geweke.diag(theta.mcmc)
```

[[1]]

```
Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5
```

mu sigma_mu -0.7779 0.7491

[[2]]

Fraction in 1st window = 0.1 Fraction in 2nd window = 0.5

• The output is the z-score itself (not the p-value).

Practical advice on diagnostics

- There are more tests we can use: Raftery and Lewis diagnostic, Heidelberger and Welch, etc.
- The Gelman-Rubin approach is quite appealing in using multiple chains
- Geweke (and Heidelberger and Welch) sometimes reject even when the trace plots look good.
- Overly sensitive to minor departures from stationarity that do not impact inferences.
- Most common method of assessing convergence is visual examination of trace plots.

Improving Results

- more iterations and multiple chains
- thinning to reduce correlations and increase ESS
- change the proposal distribution \boldsymbol{q}
- adaptive Metropolis to tune q

Proposal Distribution

Common choice

$$\mathsf{N}(\theta^{\star}; \theta^{(s)}, \delta^2 \Sigma)$$

- rough estimate of Σ based on the asymptotic Gaussian approximation ${\sf Cov}(heta\mid y)$ and $\delta=2.38/\sqrt{\dim(heta)}$
- find the MAP estimate (posterior mode) $\hat{\theta}$
- take

$$\Sigma = \left[-rac{\partial^2 \log(\mathcal{L}(heta)) + \log(\pi(heta))}{\partial heta \partial heta^T}
ight]_{ heta = \hat{ heta}}^{-1}$$

• ignore prior and use inverse of Fisher Information (covariance of MLE)

Learn Covariance in Proposal?

- Can we learn the proposal distribution?
- ad hoc?
 - run an initial MCMC for an initial tuning phase (e.g. 1000 samples) with a fixed δ and estimate $\Sigma(\theta)$ from samples.
 - run more to tweak δ to get acceptance rate between 23%-40%.
 - fix the kernel for final run
- MCMC doesn't allow you to use the full history of the chain $\theta^{(1)}, \ldots, \theta^{(s)}$ in constructing the proposal distributions as it violates the Markov assumption
- even with no further "learning", no guarantee we will converge to posterior!
- more elegant approach formal adaptive Metropolis
 - keep adapting the entire time!

 \bigwedge ad hoc adaptation may mess up convergence !

Adaptive MCMC

- run RWM with a Gaussian proposal for a fixed number of iterations for $s < s_0$
- estimate of covariance at state s

$$\Sigma^{(s)} = rac{1}{s} \left(\sum_{i=1}^s heta^{(i)} { heta^{(i)}}^T - s ar{ heta}^{(s)} ar{ heta}^{(s)}^T
ight)$$

- proposal for $s>s_0$ with $\delta=2.38/\sqrt{d}$

$$heta^* \sim \mathsf{N}(heta^{(s)}, \delta^2(\Sigma^{(s)} + \epsilon I_d))$$

- $\epsilon > 0$ insures covariance is positive definite
- if s_0 is too large will take longer for adaptation to be seen
- need conditions for vanishing adaptation e.g. that the proposal depends less and less on recent states in the chain - see Roberts & Rosenthal (2009) for examples and other conditions

Example again

Acceptance rate now around 30-35 % of 10,000 iterations!