Lecture 7: MCMC Diagnostics & Adaptive Metropolis

STA702

Merlise Clyde Duke University

C.

Example from Last Class

Marginal Likelihood

$$
\mathcal{L}(\mu, \sigma^2, \sigma^2_{\mu}) \propto (\sigma^2 + \sigma^2_{\mu})^{-n/2} \exp\left\{-\frac{1}{2} \frac{\sum_{i=1}^n \left(y_i - \mu\right)^2}{\sigma^2 + \sigma^2_{\mu}}\right\}
$$

- Priors with $\sigma^2 = 1$: $p(\mu) \propto 1$ and $\sigma_{\mu} \sim {\sf Cauchy}^+(0,1)$ independent of μ
- Symmetric proposal for μ and σ_{τ}
- Independent normals centered at current values of μ and σ_{μ} with covariance $\frac{2.38^2}{d}$ Cov (θ) where $d=2$ (the dimension of θ)
- $\delta^2 = 2.38^2/d$ optimal for multivariate normal target Roberts, Gelman, and Gilks (1997) with acceptance rate ranging from 40% to 23.4% (as $d\to\infty$)

Convergence diagnostics

- Diagnostics available to help decide on number of burn-in & collected samples.
- **Note**: no definitive tests of convergence but you should do as many diagnostics as you can, on all parameters in your model.
- With "experience", visual inspection of trace plots perhaps most useful approach.
- There are a number of useful automated tests in R.
- **CAUTION**: diagnostics cannot guarantee that a chain has converged, but they can indicate it has not converged.

Diagnostics in R

- The most popular package for MCMC diagnostics in R is coda.
- coda uses a special MCMC format so you must always convert your posterior matrix into an MCMC object.
- For the example, we have the following in R.

```
1 #library(coda)
```

```
2 theta.mcmc <- mcmc(theta,start=1) #no burn-in (simple problem!)
```
Diagnostics in R

[1](#page-4-0) summary(theta.mcmc)

```
Iterations = 1:10000Thinning interval = 1Number of chains = 1 
Sample size per chain = 10000
```
1. Empirical mean and standard deviation for each variable, plus standard error of the mean:

2. Oughtiles for each variable.

- the mean rather than the posterior uncertainty. mu -0.283420 -0.283420 -0.1508 -0.1508 -0.1508 -0.1508 -0.1508 -0.1508 -0.1508 -0.1508 -0.1508 -0.1517 -0.1517
Album -0.1508 -0.1508 -0.1508 -0.1508 -0.1508 -0.1508 -0.1508 -0.1517 -0.1517 -0.1517 -0.1517 -0.1517 -0.1517 The naive SE is the **standard error of the mean**, which captures simulation error of
- \bullet The time-series SE adjusts the naive SE for **autocorrelation**.

Effective Sample Size

- The $\bm{\mathsf{effective}}$ sample size translates the number of MCMC samples S into an equivalent number of independent samples.
- \bullet It is defined as

$$
\text{ESS} = \frac{S}{1+2\sum_k \rho_k},
$$

- S is the sample size and ρ_k is the lag k autocorrelation.
- For our data, we have

[1](#page-5-0) effectiveSize(theta.mcmc) mu sigma_mu 1356.6495 838.2613

So our 10,000 samples are equivalent to 1356.6 independent samples for μ and 838.3 independent samples for $\sigma_\mu.$

Trace plot for mean

Trace plot for σ_μ

OK (be careful of scaling in plots!)

Autocorrelation

- Another way to evaluate convergence is to look at the autocorrelation between draws of our Markov chain.
- The lag k autocorrelation, ρ_k , is the correlation between each draw and its k th lag, defined as

$$
\rho_k = \frac{\sum_{s=1}^{S-k} (\theta_s - \bar{\theta})(\theta_{s+k} - \bar{\theta})}{\sum_{s=1}^{S-k} (\theta_s - \bar{\theta})^2}
$$

- We expect the autocorrelation to decrease as *k* increases.
- If autocorrelation remains high as k increases, we have slow mixing due to the inability of the sampler to move around the space well.

Autocorrelation for mean

So-So

Autocorrelation for variance

worse

Gelman-Rubin

Gelman & Rubin suggested a diagnostic R based on taking separate chains with dispersed initial values to test convergence

Gelman-Rubin Diagnostic

- Run m > 2 chains of length 2S from overdispersed starting values.
- Discard the first S draws in each chain.
- Calculate the pooled within-chain variance *W* and between-chain variance *B*.

$$
R = \frac{\frac{S-1}{S}W + \frac{1}{S}B}{W}
$$

- numerator and denominator are both unbiased estimates of the variance if the two chains have converged
	- **otherwise** W **is an underestimate (hasn't explored enough)**
	- numerator will overestimate as B is too large (overdispersed starting points)
- As $S \to \infty$ and $B \to 0, R \to 1$
- \bullet version in R is slightly different

Gelman-Rubin Diagnostic

```
1 theta.mcmc = mcmc.list(mcmc(theta1, start=5000), mcmc(theta2, star
2 gelman.diag(theta.mcmc)
```
Potential scale reduction factors:

 Point est. Upper C.I. mu 1 1 sigma mu 1 1

Multivariate psrf

1

- Values of $R > 1.1$ suggest lack of convergence
- Looks OK
- See also gelman.plot

Geweke statistic

- Geweke proposed taking two non-overlapping parts of a single Markov chain (usually the first 10% and the last 50%) and comparing the mean of both parts, using a difference of means test
- The null hypothesis would be that the two parts of the chain are from the same distribution.
- The test statistic is a z-score with standard errors adjusted for autocorrelation, and if the p-value is significant for a variable, you need more draws.
- Output in R is the Z score

Geweke Diagnostic

```
1 geweke.diag(theta.mcmc)
```
[[1]]

Fraction in 1st window = 0.1 Fraction in 2nd window = 0.5

 mu sigma_mu -0.7779 0.7491

[[2]]

Fraction in 1st window = 0.1 Fraction in 2nd window = 0.5

 \bullet The output is the z-score itself (not the p-value).

Practical advice on diagnostics

- There are more tests we can use: Raftery and Lewis diagnostic, Heidelberger and Welch, etc.
- The Gelman-Rubin approach is quite appealing in using multiple chains
- Geweke (and Heidelberger and Welch) sometimes reject even when the trace plots look good.
- Overly sensitive to minor departures from stationarity that do not impact inferences.
- Most common method of assessing convergence is visual examination of trace plots.

Improving Results

- more iterations and multiple chains
- thinning to reduce correlations and increase ESS
- \bullet change the proposal distribution q
- adaptive Metropolis to tune *q*

Proposal Distribution

• Common choice

$$
\mathsf{N}(\theta^\star;\theta^{(s)},\delta^2\Sigma)
$$

- rough estimate of Σ based on the asymptotic Gaussian approximation $\mathsf{Cov}(\theta \mid y)$ and $\delta = 2.38/\sqrt{\dim(\theta)}$
- find the MAP estimate (posterior mode) $\hat{\theta}$
- take

$$
\Sigma = \left[-\frac{\partial^2 \log(\mathcal{L}(\theta)) + \log(\pi(\theta))}{\partial \theta \partial \theta^T} \right]_{\theta = \hat{\theta}}^{-1}
$$

• ignore prior and use inverse of Fisher Information (covariance of MLE)

Learn Covariance in Proposal?

- Can we learn the proposal distribution?
- \bullet ad hoc?
	- run an initial MCMC for an initial tuning phase (e.g. 1000 samples) with a fixed δ and estimate $\Sigma(\theta)$ from samples.
	- \blacksquare run more to tweak δ to get acceptance rate between $23\%-40\%.$
	- \blacksquare fix the kernel for final run
- MCMC doesn't allow you to use the full history of the chain $\theta^{(1)},\ldots,\theta^{(s)}$ in constructing the proposal distributions as it violates the Markov assumption
- even with no further "learning", no guarantee we will converge to posterior!
- more elegant approach formal **adaptive Metropolis**
	- \blacksquare keep adapting the entire time!

ad hoc adaptation may mess up convergence !

Adaptive MCMC

- run RWM with a Gaussian proposal for a fixed number of iterations for $s < s_0$
- estimate of covariance at state *s*

$$
\Sigma^{(s)} = \frac{1}{s}\Biggl(\sum_{i=1}^s \theta^{(i)} \theta^{(i)^T}-s\bar\theta^{(s)}\bar\theta^{(s)^T}\Biggr)
$$

 $\bullet \;$ proposal for $s > s_0$ with $\delta = 2.38/\sqrt{d}$

$$
\theta^* \sim {\sf N}(\theta^{(s)},\delta^2(\Sigma^{(s)}+\epsilon I_d))
$$

- $\bullet \epsilon > 0$ insures covariance is positive definite
- \bullet if s_0 is too large will take longer for adaptation to be seen
- need conditions for vanishing adaptation e.g. that the proposal depends less and less on recent states in the chain - see Roberts & Rosenthal (2009)for examples and other conditions

Example again

Acceptance rate now around 30-35 % of 10,000 iterations!