1

Lecture 6: Metropolis Algorithms and Stochastic Sampling

Merlise Clyde Duke University

Last Class: Normal Means Model

- Data Model $Y_i \mid \mu_i, \sigma^2 \stackrel{ind}{\sim} \mathsf{N}(\mu_i, \sigma^2)$
- Means Model $\mu_i \mid \mu, \sigma_\mu^2 \overset{iid}{\sim} \mathsf{N}(\mu, \sigma_\mu^2)$ \$
- Found marginal likelihood $\mathcal{L}(\mu,\sigma^2,\sigma_\mu^2)$ by integrating out μ_i with respect to g

$$\mathcal{L}(\mu,\sigma^2,\sigma_\mu^2) \propto (\sigma^2+\sigma_\mu^2)^{-n/2} \exp\left\{-rac{1}{2}rac{\sum_{i=1}^n \left(y_i-\mu
ight)^2}{\sigma^2+\sigma_\mu^2}
ight\}$$

- Posterior for $heta=\mu,\sigma_{\mu}^{2}$ with $\sigma^{2}=1$

$$\pi(heta \mid y) = rac{\pi(heta)\mathcal{L}(heta)}{\int_{\Theta}\pi(heta)\mathcal{L}(heta)\,d heta} = rac{\pi(heta)\mathcal{L}(heta)}{m(y)}$$

- while we can integrate out $\mu,$ no closed form for posterior of σ_{μ}^2 given σ^2

2

Important Sampling Estimate

• Estimate of m(y)

$$m(y) pprox rac{1}{T} \sum_{t=1}^T rac{\pi(heta^{(t)}) \mathcal{L}(heta^{(t)})}{q(heta^{(t)})} \qquad heta^{(t)} \sim q(heta)$$

• Ratio estimator of $\mathsf{E}[h(\theta) \mid y]$

$$\mathsf{E}[h(heta) \mid y] pprox rac{\sum_{t=1}^T h(heta^{(t)}) rac{\pi(heta^{(t)}) \mathcal{L}(heta^{(t)})}{q(heta^{(t)})}}{\sum_{t=1}^T rac{\pi(heta^{(t)}) \mathcal{L}(heta^{(t)})}{q(heta^{(t)})}} \qquad heta^{(t)} \sim q(heta)$$

• Weighted average with importance weights $w(heta^{(t)}) \propto rac{\pi(heta^{(t)}) \mathcal{L}(heta^{(t)})}{q(heta^{(t)})}$

$$\mathsf{E}[h(heta) \mid y] pprox \sum_{t=1}^T h(heta^{(t)}) w(heta^{(t)}) / \sum_{t=1}^T w(heta^{(t)}) \qquad heta^{(t)} \sim q(heta)$$

Issues

- if q() puts too little mass in regions with high posterior density, we can have some extreme weights
- optimal case is that q() is as close as possible to the posterior so that all weights are constant
- Estimate may have large variance
- Problems with finding a good q() in high dimensions (d>20) or with skewed distributions

Markov Chain Monte Carlo (MCMC)

• Typically $\pi(\theta)$ and $\mathcal{L}(\theta)$ are easy to evaluate

i) Question

How do we draw samples only using evaluations of the prior and likelihood in higher dimensional settings?

• construct a Markov chain $\theta^{(t)}$ in such a way the the stationary distribution of the Markov chain is the posterior distribution $\pi(\theta \mid y)!$

$$heta^{(0)} \stackrel{k}{\longrightarrow} heta^{(1)} \stackrel{k}{\longrightarrow} heta^{(2)} \cdots$$

- $k_t(heta^{(t-1)}; heta^{(t)})$ transition kernel
- initial state $\theta^{(0)}$
- choose some nice k_t such that $heta^{(t)} o \pi(heta \mid y)$ as $t o \infty$
- biased samples initially but get closer to the target
- Metropolis Algorithm (1950's)

Stochastic Sampling Intuition

- From a sampling perspective, we need to have a large sample or group of values, $\theta^{(1)}, \ldots, \theta^{(S)}$ from $\pi(\theta \mid y)$ whose empirical distribution approximates $\pi(\theta \mid y)$.
- for any two sets A and B, we want

$$rac{\# heta^{(s)}\in A}{S\over rac{\# heta^{(s)}\in A}{S}} = rac{\# heta^{(s)}\in A}{\# heta^{(s)}\in B} pprox rac{\pi(heta\in A\mid y)}{\pi(heta\in B\mid y)}$$

- Suppose we have a working group $\theta^{(1)}, \ldots, \theta^{(s)}$ at iteration s, and need to add a new value $\theta^{(s+1)}$.
- Consider a candidate value θ^{\star} that is *close* to $\theta^{(s)}$
- Should we set $\theta^{(s+1)} = \theta^{\star}$ or not?

Posterior Ratio

look at the ratio

$$M = rac{\pi(heta^\star \mid y)}{\pi(heta^{(s)} \mid y)} = rac{rac{p(y \mid heta^\star)\pi(heta^\star)}{p(y)}}{rac{p(y \mid heta^{(s)})\pi(heta^{(s)})}{p(y)}}$$

$$=rac{p(y\mid heta^{\star})\pi(heta^{\star})}{p(y\mid heta^{(s)})\pi(heta^{(s)})}$$

• does not depend on the marginal likelihood we don't know!

Metropolis Algorithm

- $\bullet \ \operatorname{lf} M > 1$
 - Intuition: θ^(s) is already a part of the density we desire and the density at θ^{*} is even higher than the density at θ^(s).
 - Action: set $\theta^{(s+1)} = \theta^{\star}$
- $\bullet \;\; {\rm If} \; M < 1,$
 - Intuition: relative frequency of values in our group $\theta^{(1)}, \ldots, \theta^{(s)}$ "equal" to θ^* should be $\approx M = \frac{\pi(\theta^* \mid y)}{\pi(\theta^{(s)} \mid y)}$.
 - For every $\theta^{(s)}$, include only a fraction of an instance of θ^{\star} .
 - Action: set $\theta^{(s+1)} = \theta^*$ with probability M and $\theta^{(s+1)} = \theta^{(s)}$ with probability 1 M.

Proposal Distribution

- Where should the proposed value θ^{\star} come from?
- Sample θ^* close to the current value $\theta^{(s)}$ using a symmetric proposal distribution $\theta^* \sim q(\theta^* \mid \theta^{(s)})$
- q() is actually a "family of proposal distributions", indexed by the specific value of $\theta^{(s)}$.
- Here, symmetric means that $q(heta^{\star} \mid heta^{(s)}) = q(heta^{(s)} \mid heta^{\star}).$
- Common choice

$$\mathsf{N}(heta^{\star}; heta^{(s)},\delta^{2}\Sigma)$$

with Σ based on the approximate $\mathsf{Cov}(heta \mid y)$ and $\delta = 2.44/\mathrm{dim}(heta)$ or

$$\mathrm{Unif}(heta^{\star}; heta^{(s)}-\delta, heta^{(s)}+\delta)$$

Metropolis Algorithm Recap

The algorithm proceeds as follows:

- 1. Given $\theta^{(1)}, \ldots, \theta^{(s)}$, generate a *candidate* value $\theta^{\star} \sim q(\theta^{\star} \mid \theta^{(s)})$.
- 2. Compute the acceptance ratio

$$M = rac{\pi(heta^\star \mid y)}{\pi(heta^{(s)} \mid y)} = rac{p(y \mid heta^\star)\pi(heta^\star)}{p(y \mid heta^{(s)})\pi(heta^{(s)})}.$$

3. Set

$$heta^{(s+1)} = egin{cases} heta^\star & ext{ with probability } \min(M,1) \ heta^{(s)} & ext{ with probability } 1-\min(M,1) \end{cases}$$

equivalent to sampling $u \sim U(0,1)$ independently and setting

$$heta^{(s+1)} = egin{cases} heta^{\star} & ext{if} \quad u < M \ heta^{(s)} & ext{if} \quad ext{otherwise}. \end{cases}$$

Notes

• Acceptance probability is

$$M = \min\left\{1, rac{\pi(heta^{\star})\mathcal{L}(heta^{\star})}{\pi(heta^{(s)})\mathcal{L}(heta^{(s)})}
ight\}$$

- ratio of posterior densities where normalizing constant cancels!
- The Metropolis chain ALWAYS moves to the proposed θ^{\star} at iteration s + 1 if θ^{\star} has higher target density than the current $\theta^{(s)}$.
- Sometimes, it also moves to a θ^{\star} value with lower density in proportion to the density value itself.
- This leads to a random, Markov process that naturally explores the space according to the probability defined by $\pi(\theta \mid y)$, and hence generates a sequence that, while dependent, eventually represents draws from $\pi(\theta \mid y)$ (stationary distribution of the Markov Chain).

Summarizing Samples

- Once we obtain the samples, then we are back to using Monte Carlo approximations for quantities of interest!
- we can approximate posterior means, quantiles, and other quantities of interest using the empirical distribution of our sampled values.
- easy to compute the posterior distribution of nonlinear functions of parameters!

$$\psi^{(s)}=g(heta^{(s)})$$

- some posterior summaries are hard to calculate based on samples $\{ heta^{(s)}\}$
 - mode/MAP (at least for continuous)
 - marginal likelihood $m(y) = \int \pi(heta) p(y \mid heta) \, d heta$

13

Convergence

We will not cover the convergence theory behind Metropolis chains in detail, but ...

- The Markov process generated under this procedure is **ergodic** (irreducible and aperiodic) and has a unique limiting distribution (stationary distribution)
 - ergodicity means that the chain can move anywhere at each step, which is ensured, if q(θ^{*} | θ^(s)) > 0 everywhere!
- By construction, Metropolis chains are **reversible**, so that $\pi(\theta \mid y)$ is the stationary distribution
 - Think of reversibility as being equivalent to symmetry of the joint density of two consecutive \(\theta^{(s)}\) and \(\theta^{(s+1)}\) in the stationary process (which we get by using a symmetric proposal distribution)
 - detailed balance

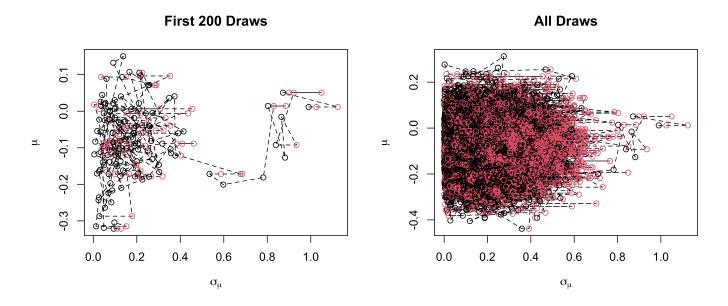
https://sta702-F23.github.io/website/

Example Priors with $\sigma^2 = 1$:

$p(\mu) \propto 1$

- Use a $\mathsf{Cauchy}(0,1)$ prior on σ_μ independent of μ and
- Symmetric proposal for μ and σ_{τ} ?
- Try independent normals $\frac{2.44^2}{d}$ Cov (θ) where d is the dimension of θ (d = 2)

Samples



- Overall Acceptance probability is 0.6 out of 10⁴ samples
- Goal is around 0.44 in 1 dimension to 0.23 in higher dimensions

16

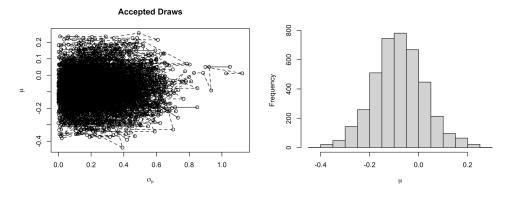
Tuning

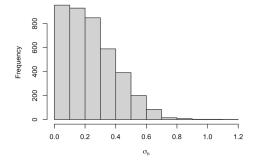
- Sampled values are correlated
- Correlation between samples can be adjusted by selecting an optimal δ (i.e., spread of the distribution) in the proposal distribution
- δ too small leads to $M\approx 1$ for most proposed values, a high acceptance rate, but very small moves, leading to highly correlated chain.
- δ too large can get "stuck" because θ^* may be very far away from high density regions, leading to a very low acceptance rate and again high correlation in the Markov chain.
- Burn-in and thinning can help!

Burn-in

- Convergence occurs regardless of our starting point (in theory), so we can usually pick any reasonable values in the parameter space as a starting point.
- May take a long time to reach high density regions
- Over representation of low density samples given finite iterations
- Generally, we throw out a certain number of the first draws, known as the **burn-in**, as an attempt to make our draws closer to the stationary distribution and less dependent on any single set of starting values.
- However, we don't know exactly when convergence occurs, so it is not always clear how much burn-in we would need.
- If you run long enough you should not need to discard any samples! (ergodicity)

Example





Convergence diagnostics

- Diagnostics available to help decide on number of burn-in & collected samples.
- Note: no definitive tests of convergence but you should do as many diagnostics as you can, on all parameters in your model.
- With "experience", visual inspection of trace plots perhaps most useful approach.
- There are a number of useful automated tests in R.
- CAUTION: diagnostics cannot guarantee that a chain has converged, but they can indicate it has not converged.

Diagnostics in R

- The most popular package for MCMC diagnostics in R is coda.
- coda uses a special MCMC format so you must always convert your posterior matrix into an MCMC object.
- For the example, we have the following in R.

```
1 #library(coda)
```

```
2 theta.mcmc <- mcmc(theta,start=1) #no burn-in (simple problem!)</pre>
```

Diagnostics in R

```
1 summary(theta.mcmc)
```

```
Iterations = 1:10000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000
```

1. Empirical mean and standard deviation for each variable, plus standard error of the mean:

	Mean	SD	Naive SE	Time-series SE
mu	-0.07977	0.1046	0.001046	0.002839
sigma_mu	0.17550	0.1273	0.001273	0.004397

? Aughtilas for each warishla.

- The naive SE is the **standard error of the mean**, which captures simulation error of the mean rather than the posterior uncertainty.
- The time-series SE adjusts the naive SE for autocorrelation.

Effective sample size.

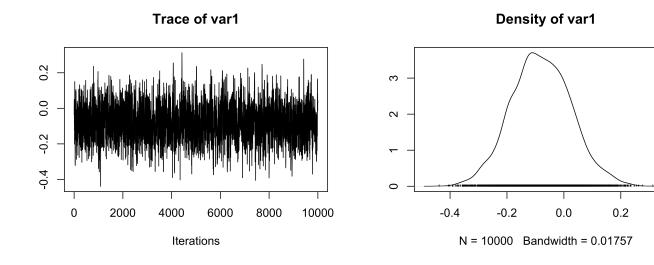
- The effective sample size translates the number of MCMC samples S into an equivalent number of independent samples.
- It is defined as

$$\mathrm{ESS} = rac{S}{1+2\sum_k
ho_k},$$

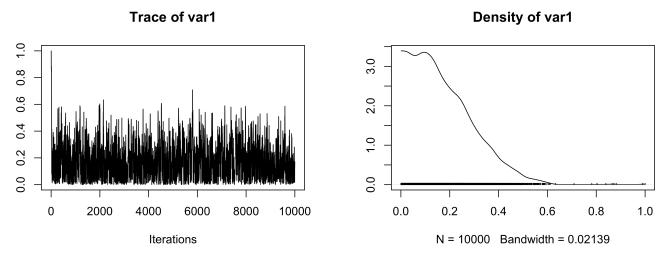
- S is the sample size and ho_k is the lag k autocorrelation.
- For our data, we have

• So our 10,000 samples are equivalent to 1356.6 independent samples for μ and 838.3 independent samples for σ_{μ} .

Trace plot for mean



Trace plot for σ_{μ}



OK (be careful of scaling in plots!)

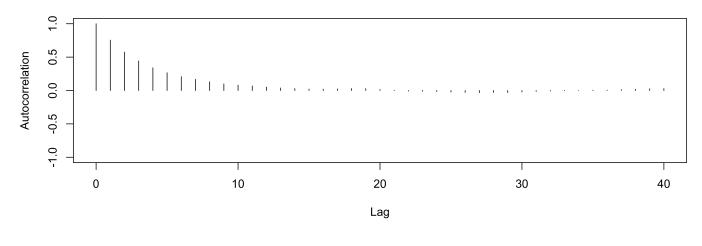
Autocorrelation

- Another way to evaluate convergence is to look at the autocorrelation between draws of our Markov chain.
- The lag k autocorrelation, ρ_k , is the correlation between each draw and its $k {\rm th}$ lag, defined as

$$\rho_k = \frac{\sum_{s=1}^{S-k} (\theta_s - \bar{\theta}) (\theta_{s+k} - \bar{\theta})}{\sum_{s=1}^{S-k} (\theta_s - \bar{\theta})^2}$$

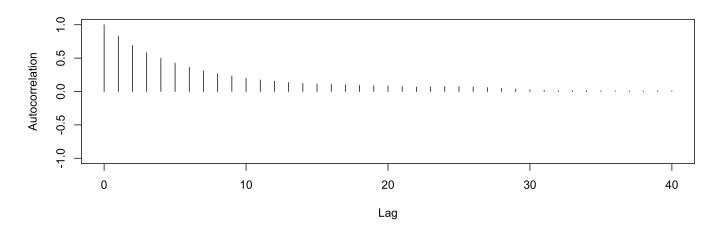
- We expect the autocorrelation to decrease as k increases.
- If autocorrelation remains high as k increases, we have slow mixing due to the inability of the sampler to move around the space well.

Autocorrelation for mean



So-So

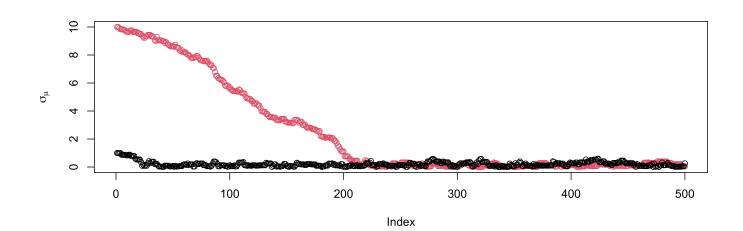
Autocorrelation for variance



worse

Gelman-Rubin

Gelman & Rubin suggested a diagnostic ${\cal R}$ based on taking separate chains with dispersed initial values to test convergence



Gelman-Rubin Diagnostic

- Run m > 2 chains of length 2S from overdispersed starting values.
- Discard the first S draws in each chain.
- Calculate the pooled within-chain variance W and between-chain variance B.

$$R = \frac{\frac{S-1}{S}W + \frac{1}{S}B}{W}$$

- numerator and denominator are both unbiased estimates of the variance if the two chains have converged
 - otherwise W is an underestimate (hasn't explored enough)
 - numerator will overestimate as B is too large (overdispersed starting points)
- As $S
 ightarrow \infty$ and B
 ightarrow 0 , R
 ightarrow 1
- version in R is slightly different

Gelman-Rubin Diagnostic

```
1 theta.mcmc = mcmc.list(mcmc(theta1, start=5000), mcmc(theta2, star
2 gelman.diag(theta.mcmc)
```

Potential scale reduction factors:

Point est. Upper C.I. mu 1 1 sigma_mu 1 1

Multivariate psrf

1

- Values of R>1.1 suggest lack of convergence
- Looks OK
- See also gelman.plot

Geweke statistic

- Geweke proposed taking two non-overlapping parts of a single Markov chain (usually the first 10% and the last 50%) and comparing the mean of both parts, using a difference of means test
- The null hypothesis would be that the two parts of the chain are from the same distribution.
- The test statistic is a z-score with standard errors adjusted for autocorrelation, and if the p-value is significant for a variable, you need more draws.
- Output in R is the Z score

Geweke Diagnostic

• The output is the z-score itself (not the p-value).

```
1 geweke.diag(theta.mcmc)
```

[[1]]

Fraction in 1st window = 0.1 Fraction in 2nd window = 0.5

```
mu sigma_mu
-0.7779 0.7491
```

[[2]]

Fraction in 1st window = 0.1 Fraction in 2nd window = 0.5

Practical advice on diagnostics

- There are more tests we can use: Raftery and Lewis diagnostic, Heidelberger and Welch, etc.
- The Gelman-Rubin approach is quite appealing in using multiple chains
- Geweke (and Heidelberger and Welch) sometimes reject even when the trace plots look good.
- Overly sensitive to minor departures from stationarity that do not impact inferences.
- Most common method of assessing convergence is visual examination of trace plots.

Improving

- more iterations and multiple chains
- thinning to reduce correlations and increase ESS e.g. if autocorrelation drops to near zero at say lag 5, keep every 5th draw
- change the proposal distribution \boldsymbol{q}