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Last Class: Normal Means Model
Data Model Yi ∣ µi, σ2 ind∼ N(µi, σ2)

Means Model $µi ∣ µ, σ2
µ

iid∼ N(µ, σ2
µ)

Found marginal likelihood  by integrating out  with respect to L(µ, σ2, σ2
µ) µi g

L(µ, σ2, σ2
µ) ∝ (σ2 + σ2

µ)−n/2 exp {−
1

2

∑n
i=1 (yi − µ)2

σ2 + σ2
µ

}
Posterior for  with θ = µ, σ2

µ σ2 = 1

π(θ ∣ y) =
π(θ)L(θ)

∫Θ π(θ)L(θ) dθ
=

π(θ)L(θ)

m(y)

while we can integrate out , no closed form for posterior of  given µ σ2
µ σ2
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Important Sampling Estimate
Estimate of m(y)

m(y) ≈
1
T

T∑
t=1

π(θ(t))L(θ(t))

q(θ(t))
θ(t) ∼ q(θ)

Ratio estimator of E[h(θ) ∣ y]

E[h(θ) ∣ y] ≈
∑T

t=1 h(θ(t)) π(θ(t))L(θ( t))
q(θ(t))

∑T
t=1

π(θ(t))L(θ( t))
q(θ(t))

θ(t) ∼ q(θ)

Weighted average with importance weights w(θ(t)) ∝ π(θ(t))L(θ( t))

q(θ(t))

E[h(θ) ∣ y] ≈
T∑

t=1

h(θ(t))w(θ(t))/
T∑

t=1

w(θ(t)) θ(t) ∼ q(θ)
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Issues
if  puts too little mass in regions with high posterior density, we can have some
extreme weights

q()

optimal case is that  is as close as possible to the posterior so that all weights are
constant

q()

Estimate may have large variance

Problems with finding a good  in high dimensions  or with skewed
distributions

q() (d > 20)
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Markov Chain Monte Carlo (MCMC)
Typically  and  are easy to evaluateπ(θ) L(θ)

How do we draw samples only using evaluations of the prior and likelihood in higher dimensional settings?

Question

construct a Markov chain  in such a way the the stationary distribution of the
Markov chain is the posterior distribution !

θ(t)

π(θ ∣ y)

θ(0) k
⟶ θ(1) k

⟶ θ(2) ⋯

 transition kernelkt(θ(t−1); θ(t))

initial state θ(0)

choose some nice  such that  as kt θ(t) → π(θ ∣ y) t → ∞
biased samples initially but get closer to the target

Metropolis Algorithm (1950’s)
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Stochastic Sampling Intuition
From a sampling perspective, we need to have a large sample or group of values, 

 from  whose empirical distribution approximates .θ(1), … , θ(S) π(θ ∣ y) π(θ ∣ y)
for any two sets  and , we wantA B

#θ(s) ∈ A

S

#θ(s) ∈ B

S

=
#θ(s) ∈ A

#θ(s) ∈ B
≈

π(θ ∈ A ∣ y)
π(θ ∈ B ∣ y)

Suppose we have a working group  at iteration , and need to add a
new value .

θ(1), … , θ(s) s
θ(s+1)

Consider a candidate value  that is close to θ⋆ θ(s)

Should we set  or not?θ(s+1) = θ⋆
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Posterior Ratio
look at the ratio

M =
π(θ⋆ ∣ y)

π(θ(s) ∣ y)
=

p(y ∣ θ⋆)π(θ⋆)
p(y)

p(y ∣ θ(s))π(θ(s))
p(y)

=
p(y ∣ θ⋆)π(θ⋆)

p(y ∣ θ(s))π(θ(s))

does not depend on the marginal likelihood we don’t know!
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Metropolis Algorithm
If M > 1

Intuition:  is already a part of the density we desire and the density at  is
even higher than the density at .

θ(s) θ⋆

θ(s)

Action: set θ(s+1) = θ⋆

If ,M < 1
Intuition: relative frequency of values in our group  “equal” to 

should be .

θ(1), … , θ(s) θ⋆

≈ M =
π(θ⋆ ∣ y)

π(θ(s) ∣ y)

For every , include only a fraction of an instance of .θ(s) θ⋆

Action: set  with probability  and  with probability 
.

θ(s+1) = θ⋆ M θ(s+1) = θ(s)

1 − M
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Proposal Distribution
Where should the proposed value  come from?θ⋆

Sample  close to the current value  using a symmetric proposal distribution θ⋆ θ(s)

θ⋆ ∼ q(θ⋆ ∣ θ(s))
 is actually a “family of proposal distributions”, indexed by the specific value of 

.

q()
θ(s)

Here, symmetric means that .q(θ⋆ ∣ θ(s)) = q(θ(s) ∣ θ⋆)
Common choice

with  based on the approximate  and  or

N(θ⋆; θ(s), δ2Σ)

Σ Cov(θ ∣ y) δ = 2.44/dim(θ)

Unif(θ⋆; θ(s) − δ, θ(s) + δ)
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Metropolis Algorithm Recap
The algorithm proceeds as follows:

1. Given , generate a candidate value .θ(1), … , θ(s) θ⋆ ∼ q(θ⋆ ∣ θ(s))
2. Compute the acceptance ratio

M =
π(θ⋆ ∣ y)

π(θ(s) ∣ y)
=

p(y ∣ θ⋆)π(θ⋆)
p(y ∣ θ(s))π(θ(s))

.

3. Set

equivalent to sampling  independently and setting

θ(s+1) = {θ⋆ with probability min(M , 1)

θ(s) with probability 1 − min(M , 1)

u ∼ U(0, 1)

θ(s+1) = { .
θ⋆ if u < M

θ(s) if otherwise
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Notes
Acceptance probability is

M = min {1,
π(θ⋆)L(θ⋆)

π(θ(s))L(θ(s))
}

ratio of posterior densities where normalizing constant cancels!

The Metropolis chain ALWAYS moves to the proposed  at iteration  if  has
higher target density than the current .

θ⋆ s + 1 θ⋆

θ(s)

Sometimes, it also moves to a  value with lower density in proportion to the
density value itself.

θ⋆

This leads to a random, Markov process that naturally explores the space according
to the probability defined by , and hence generates a sequence that, while
dependent, eventually represents draws from  (stationary distribution of
the Markov Chain).

π(θ ∣ y)
π(θ ∣ y)
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Summarizing Samples
Once we obtain the samples, then we are back to using Monte Carlo approximations
for quantities of interest!

we can approximate posterior means, quantiles, and other quantities of interest
using the empirical distribution of our sampled values.

easy to compute the posterior distribution of nonlinear functions of parameters!

ψ(s) = g(θ(s))

some posterior summaries are hard to calculate based on samples {θ(s)}

mode/MAP (at least for continuous)

marginal likelihood m(y) = ∫ π(θ)p(y ∣ θ) dθ
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Convergence
We will not cover the convergence theory behind Metropolis chains in detail, but …

The Markov process generated under this procedure is ergodic (irreducible and
aperiodic) and has a unique limiting distribution (stationary distribution)

ergodicity means that the chain can move anywhere at each step, which is
ensured, if  everywhere!q(θ⋆ ∣ θ(s)) > 0

By construction, Metropolis chains are reversible, so that  is the stationary
distribution

π(θ ∣ y)

Think of reversibility as being equivalent to symmetry of the joint density of two
consecutive  and  in the stationary process (which we get by using a
symmetric proposal distribution)

θ(s) θ(s+1)

detailed balance
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Example
Priors with :σ2 = 1

p(µ) ∝ 1

Use a  prior on  independent of  andCauchy(0, 1) σµ µ

Symmetric proposal for  and ?µ στ

Try independent normals  where  is the dimension of  (d = 2)2.442

d Cov(θ) d θ
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Samples

Overall Acceptance probability is 0.6 out of 10^{4} samples

Goal is around 0.44 in 1 dimension to 0.23 in higher dimensions

15



9/18/23, 9:11 AMSTA 702 Fall 2023 - Lecture 6: Metropolis Algorithms and Stochastic Sampling

Page 16 of 34http://localhost:3478/resources/slides/06-metropolis.html?print-pdf=#/improving

Tuning
Sampled values are correlated

Correlation between samples can be adjusted by selecting an optimal  (i.e., spread
of the distribution) in the proposal distribution

δ

 too small leads to  for most proposed values, a high acceptance rate, but
very small moves, leading to highly correlated chain.
δ M ≈ 1

 too large can get “stuck” because  may be very far away from high density
regions, leading to a very low acceptance rate and again high correlation in the
Markov chain.

δ θ⋆

Burn-in and thinning can help!
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Burn-in
Convergence occurs regardless of our starting point (in theory), so we can usually
pick any reasonable values in the parameter space as a starting point.

May take a long time to reach high density regions

Over representation of low density samples given finite iterations

Generally, we throw out a certain number of the first draws, known as the burn-in,
as an attempt to make our draws closer to the stationary distribution and less
dependent on any single set of starting values.

However, we don’t know exactly when convergence occurs, so it is not always clear
how much burn-in we would need.

If you run long enough you should not need to discard any samples! (ergodicity)
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Example
18
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Convergence diagnostics
Diagnostics available to help decide on number of burn-in & collected samples.

Note: no definitive tests of convergence but you should do as many diagnostics as
you can, on all parameters in your model.

With “experience”, visual inspection of trace plots perhaps most useful approach.

There are a number of useful automated tests in R.

CAUTION: diagnostics cannot guarantee that a chain has converged, but they can
indicate it has not converged.
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Diagnostics in R
The most popular package for MCMC diagnostics in R is coda.

coda uses a special MCMC format so you must always convert your posterior
matrix into an MCMC object.

For the example, we have the following in R.

#library(coda)1
theta.mcmc <- mcmc(theta,start=1) #no burn-in (simple problem!)2

20
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Diagnostics in R
summary(theta.mcmc)1

Iterations = 1:10000
Thinning interval = 1 
Number of chains = 1 
Sample size per chain = 10000 

1. Empirical mean and standard deviation for each variable,
   plus standard error of the mean:

             Mean     SD Naive SE Time-series SE
mu       -0.07977 0.1046 0.001046       0.002839
sigma_mu  0.17550 0.1273 0.001273       0.004397

2. Quantiles for each variable:

              2.5%     25%      50%      75%  97.5%
mu       -0.283420 -0.1508 -0.08193 -0.00848 0.1337
sigma_mu  0.007995  0.0758  0.15024  0.25228 0.4693

The naive SE is the standard error of the mean, which captures simulation error of
the mean rather than the posterior uncertainty.

The time-series SE adjusts the naive SE for autocorrelation.
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E!ective sample size.
The effective sample size translates the number of MCMC samples  into an
equivalent number of independent samples.

S

It is defined as

ESS =
S

1 + 2 ∑k ρk
,

 is the sample size and  is the lag  autocorrelation.S ρk k

For our data, we have

effectiveSize(theta.mcmc)1
       mu  sigma_mu 
1356.6495  838.2613 

So our 10,000 samples are equivalent to 1356.6 independent samples for  and
838.3 independent samples for .

µ
σµ
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Trace plot for mean
23
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Trace plot for 

OK (be careful of scaling in plots!)

σµ
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Autocorrelation
Another way to evaluate convergence is to look at the autocorrelation between
draws of our Markov chain.

The lag  autocorrelation, , is the correlation between each draw and its th lag,
defined as

k ρk k

ρk =
∑S−k

s=1 (θs − θ̄)(θs+k − θ̄)

∑S−k
s=1 (θs − θ̄)2

We expect the autocorrelation to decrease as  increases.k

If autocorrelation remains high as  increases, we have slow mixing due to the
inability of the sampler to move around the space well.

k
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Autocorrelation for mean

So-So

26
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Autocorrelation for variance

worse

27



9/18/23, 9:11 AMSTA 702 Fall 2023 - Lecture 6: Metropolis Algorithms and Stochastic Sampling

Page 28 of 34http://localhost:3478/resources/slides/06-metropolis.html?print-pdf=#/improving

Gelman-Rubin
Gelman & Rubin suggested a diagnostic  based on taking separate chains with
dispersed initial values to test convergence

R
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Gelman-Rubin Diagnostic
Run m > 2 chains of length 2S from overdispersed starting values.

Discard the first S draws in each chain.

Calculate the pooled within-chain variance  and between-chain variance .W B

R =
S−1

S W + 1
S B

W

numerator and denominator are both unbiased estimates of the variance if the two
chains have converged

otherwise  is an underestimate (hasn’t explored enough)W

numerator will overestimate as  is too large (overdispersed starting points)B

As  and , S → ∞ B → 0 R → 1
version in R is slightly different
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Gelman-Rubin Diagnostic
theta.mcmc = mcmc.list(mcmc(theta1, start=5000), mcmc(theta2, start=1
gelman.diag(theta.mcmc)2

Potential scale reduction factors:

         Point est. Upper C.I.
mu                1          1
sigma_mu          1          1

Multivariate psrf

1

Values of  suggest lack of convergenceR > 1.1
Looks OK

See also gelman.plot
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Geweke statistic
Geweke proposed taking two non-overlapping parts of a single Markov chain
(usually the first 10% and the last 50%) and comparing the mean of both parts, using
a difference of means test

The null hypothesis would be that the two parts of the chain are from the same
distribution.

The test statistic is a z-score with standard errors adjusted for autocorrelation, and
if the p-value is significant for a variable, you need more draws.

Output in R is the Z score
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Geweke Diagnostic
The output is the z-score itself (not the p-value).

geweke.diag(theta.mcmc)1
[[1]]

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5 

      mu sigma_mu 
 -0.7779   0.7491 

[[2]]

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5 

      mu sigma_mu 
  0.4454   0.6377 
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Practical advice on diagnostics
There are more tests we can use: Raftery and Lewis diagnostic, Heidelberger and
Welch, etc.

The Gelman-Rubin approach is quite appealing in using multiple chains

Geweke (and Heidelberger and Welch) sometimes reject even when the trace plots
look good.

Overly sensitive to minor departures from stationarity that do not impact
inferences.

Most common method of assessing convergence is visual examination of trace plots.
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Improving
more iterations and multiple chains

thinning to reduce correlations and increase ESS e.g. if autocorrelation drops to near
zero at say lag 5, keep every 5th draw

change the proposal distribution q
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