Introduction to Hierarchical Modelling, Empirical Bayes, and MCMC

STA702 Lecture 5

Merlise Clyde Duke University

[https://sta702-F23.github.io/website/](https://sta702-f23.github.io/website/)

Normal Means Model

• Suppose we have normal data with

$$
Y_i \stackrel{iid}{\sim} (\mu_i, \sigma^2)
$$

- separate mean for each observation!
- ${\bf Q}$ uestion: How can we possibly hope to estimate all these $\mu_i?$ One y_i per μ_i and n observations!
- **Naive estimator**: just consider only using y_i in estimating and not the other observations.
- MLE $\hat{\mu}_i = y_i$
- **Hierarchical Viewpoint**: Let's borrow information from other observations!

Motivation

- Example y_i is difference in gene expression for the $i^{\rm th}$ gene between cancer and control lines
- may be natural to think that the μ_i arise from some common distribution, $\mu_i \overset{iid}{\sim} g$
- unbiased but high variance estimators of μ_i based on one observation!

Low Variability

- little variation in μ_i s so a better estimate might be \bar{y}
- Not forced to choose either what about some weighted average between y_i and \bar{y} ?

Simple Example

Data Model

$$
Y_i \mid \mu_i, \sigma^2 \stackrel{iid}{\sim} (\mu_i, \sigma^2)
$$

• Means Model

$$
\mu_i \mid \mu, \sigma_{\mu}^2 \stackrel{iid}{\sim} (\mu, \sigma_{\mu}^2)
$$

- not necessarily a prior!
- ${\sf Now}$ estimate μ_i (let $\phi = 1/\sigma^2$ and $\phi_\mu = 1/\sigma_\mu^2\beta$
- \bullet Calculate the "posterior" $\mu_i \mid y_i, \mu, \phi, \phi_\mu$

Hiearchical Estimates

- Posterior: $\mu_i \mid y_i, \mu, \phi, \phi_{\mu} \stackrel{ind}{\sim} \textsf{N}(\tilde{\mu}_i, 1/\tilde{\phi}_{\mu})$
- \bullet estimator of μ_i weighted average of data and population parameter μ

$$
{\tilde \mu}_i = \frac{\phi_\mu \mu + \phi y_i}{\phi_\mu + \phi} \qquad \qquad {\tilde \phi}_\mu = \phi + \phi_\mu
$$

- if ϕ_μ is large relative to ϕ all of the μ_i are close together and benefit by borrowing information
- $\tilde{\mu}$ in limit as $\sigma_\mu^2 \to 0$ or $\phi_\mu \to \infty$ we have $\tilde{\mu}_i = \mu$ (all means are the same)
- if ϕ_{μ} is small relative to ϕ little borrowing of information
- in the limit as $\phi_\mu \to 0$ we have ${\tilde \mu}_i = y_i$

Bayes Estimators and Bias

- Note: you often benefit from a hierarchical model, even if its not obvious that the μ_i are related!
- The MLE for the μ_i is just the sample y_i .
- *y*_i is unbiased for μ_i but can have high variability! \bullet
- the posterior mean is actually biased.
- Usually through the weighting of the sample data and prior, Bayes procedures have the tendency to pull the estimate of μ_i toward the prior or provide **shrinkage** to the mean.

Question

Why would we ever want to do this? Why not just stick with the MLE?

MSE or Bias-Variance Tradeoff

Modern Relevance

- The fact that a biased estimator would do a better job in many estimation/prediction problems can be proven rigorously, and is referred to as **Stein's paradox**.
- Stein's result implies, in particular, that the sample mean is an *inadmissible* estimator of the mean of a multivariate normal distribution in more than two dimensions i.e. there are other estimators that will come closer to the true value in expectation.
- In fact, these are Bayes point estimators (the posterior expectation of the parameter μ_i).
- Most of what we do now in high-dimensional statistics is develop biased estimators that perform better than unbiased ones.
- Examples: lasso regression, ridge regression, various kinds of hierarchical Bayesian models, etc.

Population Parameters

- we don't know μ (or σ^2 and σ_μ^2 for that matter)
- Find marginal likelihood $\mathcal{L}(\mu, \sigma^2, \sigma_{\mu}^2)$ by integrating out μ_i with respect to g

$$
\mathcal{L}(\mu, \sigma^2, \sigma^2_{\mu}) \propto \prod_{i=1}^n \int \mathsf{N}(y_i; \mu_i, \sigma^2) \mathsf{N}(\mu_i; \mu, \sigma^2_{\mu}) d\mu_i
$$

Product of predictive distributions for $Y_i \mid \mu, \sigma^2, \sigma_{\mu}^2$ $\stackrel{iid}{\sim} {\sf N}(\mu,\sigma^2+\sigma^2_{\mu})$

$$
\mathcal{L}(\mu,\sigma^2, \sigma_{\mu}^2) \propto \prod_{i=1}^{n} (\sigma^2 + \sigma_{\mu}^2)^{-1/2} \exp\left\{ -\frac{1}{2} \frac{\left(y_i - \mu\right)^2}{\sigma^2 + \sigma_{\mu}^2} \right\}
$$

• Find MLE's

MLEs

$$
\mathcal{L}(\mu, \sigma^2, \sigma_\mu^2) \propto (\sigma^2 + \sigma_\mu^2)^{-n/2} \exp\left\{-\frac{1}{2}\sum_{i=1}^n \frac{\left(y_i - \mu\right)^2}{\sigma^2 + \sigma_\mu^2}\right\}
$$

- MLE of μ : $\hat{\mu} = \bar{y}$
- Can we say anything about σ_μ^2 ? or σ^2 individually?
- $\mathsf{MLE}\mathop{\mathsf{of}} \sigma^2 + \sigma^2_{\mu}$ is

$$
\widehat{\sigma^2+\sigma_\mu^2}=\frac{\sum(y_i-\bar{y})^2}{n}
$$

• Assume σ^2 is known (say 1)

$$
\hat{\sigma}_\mu^2 = \frac{\sum (y_i - \bar{y})^2}{n} - 1
$$

Empirical Bayes Estimates

- plug in estimates of hyperparameters into the prior and pretend they are known
- resulting estimates are known as Empirical Bayes
- underestimates uncertainty
- Estimates of variances may be negative constrain to 0 on the boundary
- Fully Bayes would put a prior on the unknowns

Bayes and Hierarchical Models

- We know the conditional posterior distribution of μ_i given the other parameters, lets work with the marginal likelihood L*(θ)*
- need a prior $\pi(\theta)$ for unknown parameters are $\theta = (\mu, \sigma^2, \sigma^2_{\mu})$ (details later)
- Posterior

$$
\pi(\theta\mid y) = \frac{\pi(\theta)\mathcal{L}(\theta)}{\int_{\Theta}\pi(\theta)\mathcal{L}(\theta)\,d\theta} = \frac{\pi(\theta)\mathcal{L}(\theta)}{m(y)}
$$

Problems: Except for simple cases (conjugate models) $m(y)$ is not available analytically

Large Sample Approximations

Appeal to BvM (Bayesian Central Limit Theorem) and approximate $\pi(\theta \mid y)$ with a ${\sf Gaussian}$ distribution centered at the posterior mode $\hat{\theta}$ and asymptotic covariance matrix

$$
V_{\theta} = \left[-\frac{\partial^2}{\partial \theta \partial \theta^T} \{ \log(\pi(\theta)) + \log(\mathcal{L}(\theta)) \} \right]^{-1}
$$

- related to Laplace approximation to integral (also large sample)
- Use normal approximation to find $\mathsf{E}[h(\theta) \mid y]$
- Integral may not exist in closed form (non-linear functions)
- use numerical quadrature (doesn't scale up)
- Stochastic methods of integration

Stochastic Integration

• Stochastic integration

$$
\mathsf{E}[h(\theta) \mid y] = \int_{\Theta} h(\theta) \pi(\theta \mid y) \, d\theta \approx \frac{1}{T} \sum_{t=1}^T h(\theta^{(t)}) \qquad \theta^{(t)} \sim \pi(\theta \mid y)
$$

what if we can't sample from the $\pi(\theta \mid y)$ but can sample from some distribution $q()$

$$
\mathsf{E}[h(\theta) \mid y] = \int_{\Theta} h(\theta) \frac{\pi(\theta \mid y)}{q(\theta)} q(\theta) \, d\theta \approx \frac{1}{T} \sum_{t=1}^T h(\theta^{(t)}) \frac{\pi(\theta^{(t)} \mid y)}{q(\theta^{(t)})}
$$

 $\mathsf{where}~ \theta^{(t)} \sim q(\theta)$

- \bullet Without the $m(y)$ in $\pi(\theta \mid y)$ we just have $\pi(\theta \mid y) \propto \pi(\theta) \mathcal{L}(\theta)$
- use twice for numerator and denominator

Important Sampling Estimate

• Estimate of $m(y)$

$$
m(y) \approx \frac{1}{T} \sum_{t=1}^T \frac{\pi(\theta^{(t)}) \mathcal{L}(\theta^{(t)})}{q(\theta^{(t)})} \qquad \theta^{(t)} \sim q(\theta)
$$

• Ratio estimator of $\mathsf{E}[h(\theta) \mid y]$

$$
\mathsf{E}[h(\theta) \mid y] \approx \frac{\sum_{t=1}^T h(\theta^{(t)}) \frac{\pi(\theta^{(t)}) \mathcal{L}(\theta^{(t)})}{q(\theta^{(t)})}}{\sum_{t=1}^T \frac{\pi(\theta^{(t)}) \mathcal{L}(\theta^{(t)})}{q(\theta^{(t)})}} \qquad \theta^{(t)} \sim q(\theta)
$$

 $\mathsf{Weighted}$ average with importance weights $w(\theta^{(t)}) \propto \frac{\pi(\theta^{(t)}) \mathcal{L}(\theta^{(t)})}{\sigma^{(\theta(t))}}$ $q(\theta^{(t)})$

$$
\mathsf{E}[h(\theta) \mid y] \approx \sum_{t=1}^T h(\theta^{(t)}) w(\theta^{(t)}) / \sum_{t=1}^T w(\theta^{(t)}) \qquad \theta^{(t)} \sim q(\theta)
$$

Issues

- if $q()$ puts too little mass in regions with high posterior density, we can have some extreme weights
- optimal case is that $q()$ is as close as possible to the posterior so that all weights are constant
- Estimate may have large variance
- Problems with finding a good $q()$ in high dimensions $\left(d > 20\right)$ or with skewed distributions

Markov Chain Monte Carlo (MCMC)

• Typically $\pi(\theta)$ and $\mathcal{L}(\theta)$ are easy to evaluate

i) Question

How do we draw samples only using evaluations of the prior and likelihood in higher dimensional settings?

 ϵ onstruct a Markov chain $\theta^{(t)}$ in such a way the the stationary distribution of the Markov chain is the posterior distribution $\pi(\theta \mid y)$!

$$
\theta^{(0)} \stackrel{k}{\longrightarrow} \theta^{(1)} \stackrel{k}{\longrightarrow} \theta^{(2)} \cdots
$$

- $k_t(\theta^{(t-1)}; \theta^{(t)})$ transition kernel
- initial state $\theta^{(0)}$
- $\bullet \ \text{ choose some nice} \ k_t \ \text{such that} \ \theta^{(t)} \to \pi(\theta \mid y) \ \text{as} \ t \to \infty$
- biased samples initially but get closer to the target
- Metropolis Algorithm (1950's)

Stochastic Sampling Intuition

- From a sampling perspective, we need to have a large sample or group of values, $\theta^{(1)},\ldots,\theta^{(S)}$ from $\pi(\theta\mid y)$ whose empirical distribution approximates $\pi(\theta\mid y).$
- for any two sets A and B , we want

$$
\frac{\# \theta^{(s)} \in A}{\displaystyle \frac{\# \theta^{(s)} \in B}{S}} = \frac{\# \theta^{(s)} \in A}{\# \theta^{(s)} \in B} \approx \frac{\pi (\theta \in A \mid y)}{\pi (\theta \in B \mid y)}
$$

- ${\sf Suppose}$ we have a working group $\theta^{(1)},\ldots,\theta^{(s)}$ at iteration s , and need to add a new value $\theta^{(s+1)}.$
- Consider a candidate value θ^\star that is *close* to $\theta^{(s)}$
- Should we set $\theta^{(s+1)} = \theta^*$ or not?

Posterior Ratio.

look at the ratio

$$
M = \frac{\pi(\theta^\star \mid y)}{\pi(\theta^{(s)} \mid y)} = \frac{\dfrac{p(y \mid \theta^\star)\pi(\theta^\star)}{p(y)}}{\dfrac{p(y \mid \theta^{(s)})\pi(\theta^{(s)})}{p(y)}}
$$

$$
= \frac{p(y\mid \theta^\star)\pi(\theta^\star)}{p(y\mid \theta^{(s)})\pi(\theta^{(s)})}
$$

does not depend on the marginal likelihood we don't know!

Metropolis algorithm

- \bullet If $M > 1$
	- Intuition: $\theta^{(s)}$ is already a part of the density we desire and the density at θ^\star is even higher than the density at $\theta^{(s)}.$
	- \blacksquare Action: set $\theta^{(s+1)} = \theta^\star$
- \bullet If $M < 1$,
	- Intuition: relative frequency of values in our group $\theta^{(1)},\ldots,\theta^{(s)}$ "equal" to θ^\star $\textsf{should be} \approx M = \frac{\pi(\theta^\star \mid y)}{\sqrt{2\pi}}.$ $\pi(\theta^{(s)} \mid y)$
	- \bullet For every $\theta^{(s)},$ include only a fraction of an instance of $\theta^{\star}.$
	- $\mathsf{Action: set}\ \theta^{(s+1)} = \theta^\star$ with probability M and $\theta^{(s+1)} = \theta^{(s)}$ with probability $1 - M$.

Proposal Distribution

- Where should the proposed value θ^* come from?
- Sample θ^{\star} close to the current value $\theta^{(s)}$ using a **symmetric proposal distribution** $\theta^{\star} \sim q(\theta^{\star} \mid \theta^{(s)})$
- $q()$ is actually a "family of proposal distributions", indexed by the specific value of $\theta^{(s)}.$
- $\textsf{Here, symmetric means that } q(\theta^\star \mid \theta^{(s)}) = q(\theta^{(s)} \mid \theta^\star).$
- Common choice

$$
\mathsf{N}(\theta^{\star};\theta^{(s)},\delta^2\Sigma)
$$

with Σ based on the approximate $\mathsf{Cov}(\theta\mid y)$ and $\delta = 2.44/\text{dim}(\theta)$ or

$$
\text{Unif}(\theta^\star;\theta^{(s)}-\delta,\theta^{(s)}+\delta)
$$

Metropolis Algorithm Recap

The algorithm proceeds as follows:

- $1. \text{ Given } \theta^{(1)}, \ldots, \theta^{(s)},$ generate a *candidate* value $\theta^{\star} \sim q(\theta^{\star} \mid \theta^{(s)}).$
- 2. Compute the acceptance ratio

$$
M=\frac{\pi(\theta^\star\mid y)}{\pi(\theta^{(s)}\mid y)}=\frac{p(y\mid \theta^\star)\pi(\theta^\star)}{p(y\mid \theta^{(s)})\pi(\theta^{(s)})}.
$$

3. Set

$$
\theta^{(s+1)} = \begin{cases} \theta^\star \quad & \text{with probability} \quad \min(M,1) \\ \theta^{(s)} \quad & \text{with probability} \quad 1-\min(M,1) \end{cases}
$$

 $\,$ equivalent to sampling $u \sim U(0,1)$ independently and setting

$$
\theta^{(s+1)} = \begin{cases} \theta^\star & \quad \text{if} \quad u < M \\ \theta^{(s)} & \quad \text{if} \quad \text{otherwise} \end{cases}.
$$

Notes

Acceptance probability is

$$
M = \min\left\{1, \frac{\pi(\theta^\star)\mathcal{L}(\theta^\star)}{\pi(\theta^{(s)})\mathcal{L}(\theta^{(s)})}\right\}
$$

- ratio of posterior densities where normalizing constant cancels!
- $\operatorname{\sf The}\nolimits$ Metropolis chain ALWAYS moves to the proposed θ^\star at iteration $s+1$ if θ^\star has higher target density than the current $\theta^{(s)}.$
- Sometimes, it also moves to a θ^\star value with lower density in proportion to the density value itself.
- This leads to a random, Markov process that naturally explores the space according τ to the probability defined by $\pi(\theta \mid y)$, and hence generates a sequence that, while ϵ dependent, eventually represents draws from $\pi(\theta \mid y)$ (stationary distribution of the Markov Chain).