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Normal Means Model
Suppose we have normal data with

Yi
iid∼ (µi, σ2)

separate mean for each observation!

Question: How can we possibly hope to estimate all these ? One  per  and 
observations!

µi yi µi n

Naive estimator: just consider only using  in estimating and not the other
observations.

yi

MLE µ̂i = yi

Hierarchical Viewpoint: Let’s borrow information from other observations!
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Motivation
 

 

Example  is difference in gene
expression for the  gene between
cancer and control lines

yi

ith

may be natural to think that the  arise

from some common distribution, 

µi

µi
iid∼ g

unbiased but high variance estimators of
 based on one observation!µi
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Low Variability

little variation in s so a better estimate might be µi ȳ

Not forced to choose either - what about some weighted
average between  and ?yi ȳ
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Simple Example
Data Model

Yi ∣ µi, σ2 iid∼ (µi, σ2)

Means Model

µi ∣ µ, σ2
µ

iid∼ (µ, σ2
µ)

not necessarily a prior!

Now estimate  (let  and )µi ϕ = 1/σ2 ϕµ = 1/σ2
µ

Calculate the “posterior” µi ∣ yi, µ, ϕ, ϕµ
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Hiearchical Estimates
Posterior: µi ∣ yi, µ, ϕ, ϕµ

ind∼ N(~µi, 1/ ~
ϕµ)

estimator of  weighted average of data and population parameter µi µ

~µi =
ϕµµ + ϕyi

ϕµ + ϕ
~
ϕµ = ϕ + ϕµ

if  is large relative to  all of the  are close together and benefit by borrowing

information

ϕµ ϕ µi

in limit as  or  we have  (all means are the same)σ2
µ → 0 ϕµ → ∞ ~µi = µ

if  is small relative to  little borrowing of informationϕµ ϕ

in the limit as  we have ϕµ → 0 ~µi = yi
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Bayes Estimators and Bias
Note: you often benefit from a hierarchical model, even if its not obvious that the 
are related!

µi

The MLE for the  is just the sample .µi yi

 is unbiased for  but can have high variability!yi µi

the posterior mean is actually biased.

Usually through the weighting of the sample data and prior, Bayes procedures have
the tendency to pull the estimate of  toward the prior or provide shrinkage to the
mean.

µi

Why would we ever want to do this? Why not just stick with the MLE?

Question

MSE or Bias-Variance Tradeoff
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Modern Relevance
The fact that a biased estimator would do a better job in many estimation/prediction
problems can be proven rigorously, and is referred to as Stein’s paradox.

Stein’s result implies, in particular, that the sample mean is an inadmissible estimator
of the mean of a multivariate normal distribution in more than two dimensions
i.e. there are other estimators that will come closer to the true value in expectation.

In fact, these are Bayes point estimators (the posterior expectation of the parameter
).µi

Most of what we do now in high-dimensional statistics is develop biased estimators
that perform better than unbiased ones.

Examples: lasso regression, ridge regression, various kinds of hierarchical Bayesian
models, etc.
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Population Parameters
we don’t know  (or  and  for that matter)µ σ2 σ2

µ

Find marginal likelihood  by integrating out  with respect to L(µ, σ2, σ2
µ) µi g

L(µ, σ2, σ2
µ) ∝

n

∏
i=1

∫ N(yi; µi, σ2)N(µi; µ, σ2
µ) dµi

Product of predictive distributions for Yi ∣ µ, σ2, σ2
µ

iid∼ N(µ, σ2 + σ2
µ)

L(µ, σ2, σ2
µ) ∝

n∏
i=1

(σ2 + σ2
µ)−1/2 exp {−

1

2

(yi − µ)2

σ2 + σ2
µ

}
Find MLE’s
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MLEs
L(µ, σ2, σ2

µ) ∝ (σ2 + σ2
µ)−n/2 exp {−

1

2

n∑
i=1

(yi − µ)2

σ2 + σ2
µ

}
MLE of : µ µ̂ = ȳ

Can we say anything about ? or  individually?σ2
µ σ2

MLE of  isσ2 + σ2
µ

ˆσ2 + σ2
µ =

∑(yi − ȳ)2

n

Assume  is known (say 1)σ2

σ̂2
µ =

∑(yi − ȳ)2

n
− 1
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Empirical Bayes Estimates
plug in estimates of hyperparameters into the prior and
pretend they are known

resulting estimates are known as Empirical Bayes

underestimates uncertainty

Estimates of variances may be negative - constrain to 0 on
the boundary

Fully Bayes would put a prior on the unknowns
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Bayes and Hierarchical Models
We know the conditional posterior distribution of  given the other parameters,
lets work with the marginal likelihood 

µi

L(θ)

need a prior  for unknown parameters are  (details later)π(θ) θ = (µ, σ2, σ2
µ)

Posterior

π(θ ∣ y) =
π(θ)L(θ)

∫Θ π(θ)L(θ) dθ
=

π(θ)L(θ)

m(y)

Problems: Except for simple cases (conjugate models)  is not available
analytically

m(y)
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Large Sample Approximations
Appeal to BvM (Bayesian Central Limit Theorem) and approximate  with a

Gaussian distribution centered at the posterior mode  and asymptotic covariance
matrix

π(θ ∣ y)
θ̂

Vθ = [−
∂ 2

∂θ∂θT
{log(π(θ)) + log(L(θ))}]

−1

related to Laplace approximation to integral (also large sample)

Use normal approximation to find E[h(θ) ∣ y]
Integral may not exist in closed form (non-linear functions)

use numerical quadrature (doesn’t scale up)

Stochastic methods of integration
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Stochastic Integration
Stochastic integration

E[h(θ) ∣ y] = ∫
Θ

h(θ)π(θ ∣ y) dθ ≈
1
T

T∑
t=1

h(θ(t)) θ(t) ∼ π(θ ∣ y)

what if we can’t sample from the  but can sample from some distribution 

where 

π(θ ∣ y) q()

E[h(θ) ∣ y] = ∫
Θ

h(θ)
π(θ ∣ y)

q(θ)
q(θ) dθ ≈

1
T

T∑
t=1

h(θ(t))
π(θ(t) ∣ y)

q(θ(t))

θ(t) ∼ q(θ)
Without the  in  we just have m(y) π(θ ∣ y) π(θ ∣ y) ∝ π(θ)L(θ)

use twice for numerator and denominator

14
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Important Sampling Estimate
Estimate of m(y)

m(y) ≈
1
T

T∑
t=1

π(θ(t))L(θ(t))

q(θ(t))
θ(t) ∼ q(θ)

Ratio estimator of E[h(θ) ∣ y]

E[h(θ) ∣ y] ≈
∑T

t=1 h(θ(t)) π(θ(t))L(θ( t))
q(θ(t))

∑T
t=1

π(θ(t))L(θ( t))
q(θ(t))

θ(t) ∼ q(θ)

Weighted average with importance weights w(θ(t)) ∝ π(θ(t))L(θ( t))

q(θ(t))

E[h(θ) ∣ y] ≈
T∑

t=1

h(θ(t))w(θ(t))/
T∑

t=1

w(θ(t)) θ(t) ∼ q(θ)
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Issues
if  puts too little mass in regions with high posterior
density, we can have some extreme weights

q()

optimal case is that  is as close as possible to the
posterior so that all weights are constant

q()

Estimate may have large variance

Problems with finding a good  in high dimensions 
 or with skewed distributions

q()
(d > 20)
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Markov Chain Monte Carlo (MCMC)
Typically  and  are easy to evaluateπ(θ) L(θ)

How do we draw samples only using evaluations of the prior and likelihood in higher dimensional settings?

Question

construct a Markov chain  in such a way the the stationary distribution of the
Markov chain is the posterior distribution !

θ(t)

π(θ ∣ y)

θ(0) k
⟶ θ(1) k

⟶ θ(2) ⋯

 transition kernelkt(θ(t−1); θ(t))

initial state θ(0)

choose some nice  such that  as kt θ(t) → π(θ ∣ y) t → ∞
biased samples initially but get closer to the target

Metropolis Algorithm (1950’s)
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Stochastic Sampling Intuition
From a sampling perspective, we need to have a large sample or group of values, 

 from  whose empirical distribution approximates .θ(1), … , θ(S) π(θ ∣ y) π(θ ∣ y)
for any two sets  and , we wantA B

#θ(s) ∈ A

S

#θ(s) ∈ B

S

=
#θ(s) ∈ A

#θ(s) ∈ B
≈

π(θ ∈ A ∣ y)
π(θ ∈ B ∣ y)

Suppose we have a working group  at iteration , and need to add a
new value .

θ(1), … , θ(s) s
θ(s+1)

Consider a candidate value  that is close to θ⋆ θ(s)

Should we set  or not?θ(s+1) = θ⋆

18
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Posterior Ratio.
look at the ratio

M =
π(θ⋆ ∣ y)

π(θ(s) ∣ y)
=

p(y ∣ θ⋆)π(θ⋆)
p(y)

p(y ∣ θ(s))π(θ(s))
p(y)

=
p(y ∣ θ⋆)π(θ⋆)

p(y ∣ θ(s))π(θ(s))

does not depend on the marginal likelihood we don’t know!
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Metropolis algorithm
If M > 1

Intuition:  is already a part of the density we desire and the density at  is
even higher than the density at .

θ(s) θ⋆

θ(s)

Action: set θ(s+1) = θ⋆

If ,M < 1
Intuition: relative frequency of values in our group  “equal” to 

should be .

θ(1), … , θ(s) θ⋆

≈ M =
π(θ⋆ ∣ y)

π(θ(s) ∣ y)

For every , include only a fraction of an instance of .θ(s) θ⋆

Action: set  with probability  and  with probability 
.

θ(s+1) = θ⋆ M θ(s+1) = θ(s)

1 − M

20
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Proposal Distribution
Where should the proposed value  come from?θ⋆

Sample  close to the current value  using a symmetric proposal distribution θ⋆ θ(s)

θ⋆ ∼ q(θ⋆ ∣ θ(s))
 is actually a “family of proposal distributions”, indexed by the specific value of 

.

q()
θ(s)

Here, symmetric means that .q(θ⋆ ∣ θ(s)) = q(θ(s) ∣ θ⋆)
Common choice

with  based on the approximate  and  or

N(θ⋆; θ(s), δ2Σ)

Σ Cov(θ ∣ y) δ = 2.44/dim(θ)

Unif(θ⋆; θ(s) − δ, θ(s) + δ)
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Metropolis Algorithm Recap
The algorithm proceeds as follows:

1. Given , generate a candidate value .θ(1), … , θ(s) θ⋆ ∼ q(θ⋆ ∣ θ(s))
2. Compute the acceptance ratio

M =
π(θ⋆ ∣ y)

π(θ(s) ∣ y)
=

p(y ∣ θ⋆)π(θ⋆)
p(y ∣ θ(s))π(θ(s))

.

3. Set

equivalent to sampling  independently and setting

θ(s+1) = {θ⋆ with probability min(M , 1)

θ(s) with probability 1 − min(M , 1)

u ∼ U(0, 1)

θ(s+1) = { .
θ⋆ if u < M

θ(s) if otherwise
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Notes
Acceptance probability is

M = min {1,
π(θ⋆)L(θ⋆)

π(θ(s))L(θ(s))
}

ratio of posterior densities where normalizing constant cancels!

The Metropolis chain ALWAYS moves to the proposed  at iteration  if  has
higher target density than the current .

θ⋆ s + 1 θ⋆

θ(s)

Sometimes, it also moves to a  value with lower density in proportion to the
density value itself.

θ⋆

This leads to a random, Markov process that naturally explores the space according
to the probability defined by , and hence generates a sequence that, while
dependent, eventually represents draws from  (stationary distribution of
the Markov Chain).

π(θ ∣ y)
π(θ ∣ y)
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