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Uses of Posterior Predictive

e Plot the entire density or summarize

Available analytically for conjugate families

Monte Carlo Approximation

yn+t | 0(

M'ﬂ

P(Ynt1 | Y1, -
t=1

where 8% ~ (0 | y1,...yn)fort =1,...,T

T samples from the posterior distribution

Empirical Estimates & Quantiles from Monte Carlo Samples
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Models

e So far this all assumes we have a correct sampling model
and a “reasonable” prior distrbution

e George Box: All models are wrong but some are useful

e “Useful” — model provides a good approximation; there
aren't clear aspects of the data that are ignored or
misspecified

e how can we decide if a model is misspecified and needs to
change?
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Example

e Poisson model
Y}\H%Poisson(Q) i=1,...,n

¢ How might our model be misspecified?
= Poisson assumes that E(Y;) = Var(Y;) = 6
= it's very common for data to be over-dispersed E(Y;) < Var(Y;)
= jgnored additional structure in the data, i.e. data are not iid

= zero-inflation many more zero values than consistent with the poisson model
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Posterior Predictive Checks

e Guttman (1967), Rubin (1984) proposed the use of Posterior Predictive Checks
(PPC)] for model criticism; further developed by Gelman et al (1996)

e the spirit of posterior predictive checks is that “If my model is good, then its posterior
predictive distribution will generate data that look like my oberved data”

. yObs is the observed data

e 3*P is a new dataset sampled from the posterior predictive p(y*P | y°) of size n
(same size as the observed)

e Use adiagnostic statistic d(y) to capture some feature of the data that the model
may fail to capture, say variance

« compare d(y°) to the reference distribution of d(y"°P)

e Use Posterior Predictive P-value as a summary

prrc = P(d(y*™) > d(y"P) | d(y*™))
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Formally

e choose a “diagnostic statistic” d(-) that captures some summary of the data, e.g.
Va r(y) for over-dispersion, where large values of the statistic would be surprising if
the model were correct.

e d(y°™) = d,ps value of statistic in observed data

o d(y;"?) = dpreq value of statistic for the tth random dataset drawn from the
posterior predictive distribution

1. Generate 8; 4 p(6y°>)

2. Generate y™®t | 0, u p(y | 6¢)

3. Calculate d(y;™®)
« plot posterior predictive distribution of d(y;”) and add dps
e How extreme is t,s compared to the distribution of d(y**P)?

e compute p-value pppc = & >, I(d(y*™) > d(y;"))
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Example with Over Dispersion

n = 100; phi = 1; mu = 5

y = rpois(n, theta.t)
a=1; b =1;
t.obs = var(y)

nT = 10000

t.pred = rep(NA, nT)

for (t in 1:nT) {
theta.post = rgamma(l,

t.pred[t] = var(y.pred)

hist(t.pred,

theta.t = rgamma(n,phi,phi/mu)

a + sum(y),
b + n)

y.pred = rpois(n, theta.post)
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Zero Inflated Distribution
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n = 1000
mu = 5; phi = 1

z = rbinom(n, 1, .90)
y = rpois(n, theta.t)*z

theta.t = rgamma(n,phi,phi/mu

e Letthe ¢() be the proportion of zeros

E:Z;1l(yi:: 0)

n

d(y) =
—0.27
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Posterior Predictive Distribution

Posterior Predictive Distribution
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Posterior Predictive p-values (PPPs)

e p-value is probability of seeing something as extreme or more so under a
hypothetical “null” model

e from afrequentist perspect, one appealing property of p-values is that they should
be uniformally distributed under the “null” model

e PPPs advocated by Gelman & Rubin in papers and BDA are not valid p-values. They
are do not have a uniform distribution under the hypothesis that the model is
correctly specified

e the PPPs tend to be concentrated around 0.5, tends not to reject (conservative)
e theoretical reason for the incorrect distribution is due to double use of the data

o DO NOT USE as a formal test! use as a diagnostic plot to see how model might fall
flat, but be cautious!
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Example: Bivariate Normal

average squared distance to the posterior mean
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e PPP=0.52

¢ What’s happening?
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Problems with PPC

e Bayarri & Berger (2000) provides more discussion about why PPP are not always
calibrated

e Double use of the data; Y '*P depends on the observed diagnostic in last case

e Bayarri & Berger propose the partial predicitve p-value and condtional predictive p-
value that avoids double use of the data by “removing” the contribution of d},s to
the posterior for 8 or conditioning an a statistic, such as the MLE of 0

e heuristically, need the diagnostic to be independent of posterior for 8
e not always easy to find!

e Moran et al (2022) propose a workaround to avoid double use of the data by spliting
the data yYobs, Ynews USE Yobs, to learn @ and the other to calculate d ey

e can be calculated via simulation easily
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POP-PC of Moran et al

average squared distance to the posterior mean
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e POP-PPC=0.2
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Modeling Over-Dispersion

e Original ModelY; | 8 ~ Poisson(0)

e cause of overdispersion is variation in the rate

Y; | 0; ~ Poisson(6;)

model variation via prior

0; ~ 7T0()

mo() characterizes variation in the rate parameter across inviduals

Simple Two Stage Hierarchical Model
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Example

0; ~ Gamma(¢“7 ¢)

Find pmffor Y; | p, ¢
Find E[Y; | p, ] and Var[Y; | u, 4]

Homework:

0; ~ Gamma(¢7 ¢/:U’)

Can either of these model zero-inflation?
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Modeling Perspectives

1. start with a simple model 2. start with a fairly complex model or

models
o ask if there are surprises through

Posterior Checks ¢ shrinkage to prevend overfitting

e need calibrated diagnostic(s) with good e formal tests for simplifying models

power ¢ methods to combine multiple models to

» need these to work even if starting express uncertaity

model is relatively complex e properties
e other informal diagnostics (residuals)
e remodel if needed based on departures

e Bayesian meaning?
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