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Last Time ...

e Introduction to “ingredients” of Bayesian analysis
e |llustrated a simple Beta-Binomial conjugate example

e Posterior (6 | y) isaBeta(a + y,b +n — y)

Today ...

e an introduction to loss functions
e Bayes Risk

e optimal decisions and estimators
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Bayes estimate

e Aswe've seen by now, having posterior distributions instead of one-number
summaries is great for capturing uncertainty.

e That said, it is still very appealing to have simple summaries, especially when dealing
with clients or collaborators from other fields, who desire one.

» What if we want to produce a single “best” estimate of 6?

= What if we want to produce an interval estimate (61, 07)?

These would provide alternatives to the frequentist MLEs and confidence intervals
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Heuristically

e “best” estimate of @ is the
maximum a posteriori estimate
(MAP) or posterior mode

= what do we really mean by
“best”?

e find an interval such that
P(8 € (61,00) | y) =1 -«

= |ots of intervals that satisfy
this! which one is “best”?

posterior density
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Loss Functions for Estimators

Introduce loss functions for decision making about what to report!

e aloss function provides a summary for how bad an estimator 0 s relative to the
“true” value of 6

e Squared error loss (L2)

e Absolute errorloss (L1)

But how do we deal with the fact that we do not know 6?
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Bayes Risk

o Bayesrisk is defined as the expected loss of using 0 averaging over the posterior
distribution.

A

R(8) = En(ely)1(6, )]

o the Bayes optimal estimate f is the estimator that has the lowest posterior
expected loss or Bayes Risk

e Depends on choice of loss function

e Frequentist risk also exists for evaluating a given estimator under true value of

Ep(y\Htrue) [l(etruea é) )]
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Squared Error Loss

A common choice for point estimation is squared error loss:
R(6) = Exoy[10,0) = [ (0—0)x(6| ) do

Let’s work it out!

A

Expand, take expectations of R(6) with respect to 6 and factor as a quadratic to
find the minimizer (or take derivatives)
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Steps

R(6) = /@ (6% — 260+ 6°)n(6 | y) dO

A

R(A) = 6> —2 Lew(e\y)d9+/@e%(e|y)d9

R(0) = 6% — 20E[0 | y] + E[6? | ]
R(0) = 6% — 26E[0 | y) + E[0 | y]> —E[f | y)* + E[6? |

Quadratic in @ minimized when 8 = E[6 | 4]
—> posterior mean is the Bayes optimal estimator for 8 under squared error loss

e |Inthe beta-binomial case for example, the optimal Bayes estimate under squared
a-+y

error lossis @ = hon
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What about other loss functions?

e Clearly, squared error is only one possible loss function. An alternative is absolute
loss, which has

Absolute loss places less of a penalty on large deviations & the resulting Bayes
estimate is the posterior median.

e Medianis actually relatively easy to estimate.

Recall that for a continuous random variable Y with cdf F', the median of the
distribution is the value z, which satisfies

1
F(z) =Pr(Y <2z) = 5 = Pr(Y > 2)=1- F(2)
e Aslong as we know how to evaluate the CDF of the distribution we have, we can
solve for z.
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Beta-Binomial

e For the beta-binomial model, the CDF of the beta posterior can be written as

F(z) =Pr(0 < zly) = / Beta(f|a + y,b + n — y)do.
0

Then, if 8 is the median, we have that F'(6) = 0.5

To solve for é apply the inverse CDF

A

9 =F(0.5)

In R, that’s simply

gbeta(0.5,a+y,b+tn-y)

For other distributions, switch out the beta.
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Loss Functions in General

* Aloss function (6, §(y)) is a function of the parameter 8
and d(y) based on just the data y

 For example, d(y) = g can be the decision to use the
sample mean to estimate 6, the true population mean.

e [(0,0(y)) determines the penalty for making the decision
d(y), if @is the true parameter or state of nature; the loss
function characterizes the price paid for errors.

e Bayes optimal estimator or action is the estimator/action
that minimizes the expected posterior loss marginalizing
out any unknowns over posterior/predictive distribution.

11
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MAP Estimator

e What about the MAP estimator? Is it an optimal Bayes
estimator & under what choice of loss function?

e [ loss:

Roo(8) = lim | (6 — 0)Px(6 | y) db

p%OO @

e Essentially saying that we need the estimator to be right
on the truth or the error blows up!

e |sthis areasonable loss function?

12
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Interval Estimates

Recall that a frequentist confidence interval [I(y), u(y)| has 95% frequentist
coverage for a population parameter @ if, before we collect the data,

Pr(i(y) < 6 < u(y)|6] = 0.95.

e This means that 95% of the time, our constructed interval will cover the true
parameter, and 5% of the time it won't.

e Thereis NOT a 95% chance your interval covers the true parameter once you have
collected the data.

e In any given sample, you don't know whether you're in the lucky 95% or the unlucky
5%. You just know that either the interval covers the parameter, or it doesn’t (useful,
but not too helpful clearly).

e Often based on aysmptotics i.e use a Wald or other type of frequentist asymptotic
interval 6 & 1.96 se(6)
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Bayesian Intervals

e We want a Bayesian alternative to confidence intervals for some pre-specified value
of o

Aninterval |I(y), u(y)] has 1 — a 100% Bayesian coverage for 0 if

Pr(6 € [i(y), u(y)] |y) =1-«a

This describes our information about where @ lies after we observe the data.

Fantastic! This is actually the interpretation people want to give to the frequentist
confidence interval.

e Bayesian interval estimates are often generally called credible intervals or credible
sets.

How to choose [I(y), u(y)]?

14
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Bayesian Equal Tail Interval

e The easiest way to obtain a Bayesian interval estimate is to use posterior quantiles
with equal tail areas. Often when researchers refer to a credible interval, this is

what they mean.
e Tomakeal1l00 x (1 — «) equi-tail quantile-based credible interval, find numbers
(quantiles) 6,/ < 01_,/2 suchthat
o

1.Pr(0 < 042 | y) = E;and
o
2. PI‘(Q > 91—a/2 | y) = 5

Convenient conceptually and easy as we just take the a/2 and 1 — a/2 qguantiles of
(0 | y) asl(y) and u(y), respectively.

15
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Beta-Binomial Equal-tailed Interval

posterior density

I I | [ [ I
0.0 0.2 04 0.6 0.8 1.0

0

95% Equal -Tail Areainterval is (0.02, 0.41)
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Monte Carlo Version

e Suppose we don't have (8 | y) is a simple form, but we do have samples 8+, ..., 07
from (6 | y)

e We can use these samples to obtain Monte Carlo (MC) estimates of posterior
summaries

. 1
0=E[0|y ~—

v
T t

WMH
—

o what about MC quantile estimates?
e Find the 2.5th and 97.5th percentile from the empirical distribution

theta = rbeta(1000, a + y, b + n - vy)
quantile(theta, c(0.025, 0.975))

2.5% 97.5%
0.02141993 0.39572970
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Equal-Tail Interval

posterior density

0.0 0.2 04 0.6 0.8 1.0

Note there are values of 8 outside the quantile-based credible interval, with higher
density than some values inside the interval.


https://sta702-f23.github.io/website/

HPD Region

e A100 x (1 — a) highest posterior density (HPD) region is a subset s(y) of the
parameter space © such that

1.Pr(0 € s(y) |y) =1 — o; and
2.1f0, € s(y)and 0y € s(y),thenp(0, | y) > p(Os | y) (highest density set)

e = All pointsin a HPD region have higher posterior density than points outside the
region.

e The basicideais to gradually move a horizontal line down across the density,
including in the HPD region all values of 8 with a density above the horizontal line.

e Stop moving the line down when the posterior probability of the values of 8 in the
regionreaches 1 — o

19
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Simulation Based using the coda
Package

---- 0.95 equal-tail Cl 1
0% equ library(coda)

0.90 HPD HPDinterval (as.mcmc (theta))

lower upper
varl 0.005930904 0.3669906
attr(, "Probability")
[1] 0.95

posterior density
2
|
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Properties of HPD Sets

Shortest length interval (or volume) for the given coverage

Equivalent to Equal-Tail Intervals if the posterior is unimodal and symmetric

May not be an interval if the posterior distribution is multi-modal

In general, not invariant under monotonic transformations of 6. (Why?)

More computationally intensive to solve exactly!

| @ See “The Bayesian Choice” by Christian Robert for more info on Loss Functions for Interval Estimation
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Connections between Bayes and MLE
Based Frequentist Inference

Berstein von Mises (BvM) Theorems) aka Bayesian Central Limit Theorems

e examine limiting form of the posterior distribution (6 | y) asn — oo
e 7(0 | y) goes to a Gaussian under regularity conditions
= centered at the MLE

= variance given by the inverse of the Expected Fisher Information (var of MLE)

e The most important implication of the BvM is that Bayesian inference is
asymptotically correct from a frequentist point of view

e Used to justify Normal Approximations to the posterior distribution (eg Laplace
approximations)

22
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Model Misspecification ?

We might have chosen a bad sampling model/likelihood

posterior still converges to a Gaussian centered at the MLE under the misspecified
model, but wrong variance

95% Bayesian credible sets do not have correct frequentist coverage
See for more rigorous treatment if interested
parametric model is “close” to the true data-generating process

model diagnostics & changing the model can reduce the gap between model we are
using and the true data generating process
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