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Last Time …
Introduction to “ingredients” of Bayesian analysis

Illustrated a simple Beta-Binomial conjugate example

Posterior  is a π(θ ∣ y) Beta(a + y, b + n − y)

Today …

an introduction to loss functions

Bayes Risk

optimal decisions and estimators
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Bayes estimate
As we’ve seen by now, having posterior distributions instead of one-number
summaries is great for capturing uncertainty.

That said, it is still very appealing to have simple summaries, especially when dealing
with clients or collaborators from other �elds, who desire one.

What if we want to produce a single “best” estimate of ?θ

What if we want to produce an interval estimate ?(θL, θU)

These would provide alternatives to the frequentist MLEs and con�dence intervals
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Heuristically
“best” estimate of  is the
maximum a posteriori estimate
(MAP) or posterior mode

θ

what do we really mean by
“best”?

�nd an interval such that
P(θ ∈ (θL, θU) ∣ y) = 1 − α

lots of intervals that satisfy
this! which one is “best”?
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Loss Functions for Estimators
Introduce loss functions for decision making about what to report!

a loss function provides a summary for how bad an estimator  is relative to the
“true” value of 

θ̂
θ

Squared error loss (L2)

l(θ, θ̂) = (θ̂ − θ)2

Absolute error loss (L1)

l(θ, θ̂) = |θ̂ − θ|

But how do we deal with the fact that we do not know ?θ
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Bayes Risk
Bayes risk is de�ned as the expected loss of using  averaging over the posterior
distribution.

θ̂

R(θ̂) = Eπ(θ∣y)[l(θ, θ̂)]

the Bayes optimal estimate  is the estimator that has the lowest posterior
expected loss or Bayes Risk

θ̂

Depends on choice of loss function

Frequentist risk also exists for evaluating a given estimator under true value of θ

Ep(y∣θtrue)[l(θtrue, θ̂))]
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Squared Error Loss
A common choice for point estimation is squared error loss:

R(θ̂) = Eπ(θ∣y)[l(θ, θ̂)] = ∫
Θ

(θ̂ − θ)2π(θ ∣ y) dθ

Expand, take expectations of  with respect to  and factor as a quadratic to
�nd the minimizer (or take derivatives)

Let’s work it out!

R(θ̂) θ
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Steps
R(θ̂) = ∫

Θ
(θ̂2 − 2θ̂θ + θ2)π(θ ∣ y) dθ

R(θ̂) = θ̂2 − 2θ̂∫
Θ

θπ(θ ∣ y) dθ + ∫
Θ

θ2π(θ ∣ y) dθ

R(θ̂) = θ̂2 − 2θ̂E[θ ∣ y] + E[θ2 ∣ y]

R(θ̂) = θ̂2 − 2θ̂E[θ ∣ y] + E[θ ∣ y]2 − E[θ ∣ y]2 + E[θ2 ∣ y]

Quadratic in  minimized when 
 posterior mean is the Bayes optimal estimator for  under squared error loss

θ̂ θ̂ = E[θ ∣ y]
⇒ θ

In the beta-binomial case for example, the optimal Bayes estimate under squared

error loss is θ̂ = a+y
a+b+n
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What about other loss functions?
Clearly, squared error is only one possible loss function. An alternative is absolute
loss, which has

l(θ, θ̂) = |θ − θ̂|

Absolute loss places less of a penalty on large deviations & the resulting Bayes
estimate is the posterior median.

Median is actually relatively easy to estimate.

Recall that for a continuous random variable  with cdf , the median of the
distribution is the value , which satis�es

Y F
z

F(z) = Pr(Y ≤ z) =
1

2
= Pr(Y ≥ z) = 1 − F(z)

As long as we know how to evaluate the CDF of the distribution we have, we can
solve for .z
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Beta-Binomial
For the beta-binomial model, the CDF of the beta posterior can be written as

F(z) = Pr(θ ≤ z|y) = ∫
z

0

Beta(θ|a + y, b + n − y)dθ.

Then, if  is the median, we have that θ̂ F(θ̂) = 0.5

To solve for , apply the inverse CDFθ̂

θ̂ = F −1(0.5)

In R, that’s simply

qbeta(0.5,a+y,b+n-y)1

For other distributions, switch out the beta.
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Loss Functions in General
A loss function  is a function of the parameter 
and  based on just the data 

l(θ, δ(y)) θ

δ(y) y

For example,  can be the decision to use the
sample mean to estimate , the true population mean.

δ(y) = ȳ

θ

 determines the penalty for making the decision
, if  is the true parameter or state of nature; the loss

function characterizes the price paid for errors.

l(θ, δ(y))
δ(y) θ

Bayes optimal estimator or action is the estimator/action
that minimizes the expected posterior loss marginalizing
out any unknowns over posterior/predictive distribution.
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MAP Estimator
What about the MAP estimator? Is it an optimal Bayes
estimator & under what choice of loss function?

 loss:L∞

R∞(θ̂) = lim
p→∞

∫
Θ

(θ − θ̂)pπ(θ ∣ y) dθ

Essentially saying that we need the estimator to be right
on the truth or the error blows up!

Is this a reasonable loss function?
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Interval Estimates
Recall that a frequentist con�dence interval  has 95% frequentist
coverage for a population parameter  if, before we collect the data,

[l(y),  u(y)]
θ

Pr[l(y) < θ < u(y)|θ] = 0.95.

This means that 95% of the time, our constructed interval will cover the true
parameter, and 5% of the time it won’t.

There is NOT a 95% chance your interval covers the true parameter once you have
collected the data.

In any given sample, you don’t know whether you’re in the lucky 95% or the unlucky
5%. You just know that either the interval covers the parameter, or it doesn’t (useful,
but not too helpful clearly).

Often based on aysmptotics i.e use a Wald or other type of frequentist asymptotic

interval θ̂ ± 1.96 se(θ̂)
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Bayesian Intervals
We want a Bayesian alternative to con�dence intervals for some pre-speci�ed value
of α

An interval  has  100% Bayesian coverage for  if[l(y),  u(y)] 1 − α θ

Pr(θ ∈ [l(y),  u(y)] ∣ y) = 1 − α

This describes our information about where  lies after we observe the data.θ

Fantastic! This is actually the interpretation people want to give to the frequentist
con�dence interval.

Bayesian interval estimates are often generally called credible intervals or credible
sets.

How to choose ?[l(y),  u(y)]
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Bayesian Equal Tail Interval
The easiest way to obtain a Bayesian interval estimate is to use posterior quantiles
with equal tail areas. Often when researchers refer to a credible interval, this is
what they mean.

To make a  equi-tail quantile-based credible interval, �nd numbers
(quantiles)  such that

100 × (1 − α)
θα/2 < θ1−α/2

1. ; andPr(θ < θα/2 ∣ y) =
α

2

2. .Pr(θ > θ1−α/2 ∣ y) =
α

2

Convenient conceptually and easy as we just take the  and  quantiles of
 as  and , respectively.

α/2 1 − α/2
π(θ ∣ y) l(y) u(y)
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Beta-Binomial Equal-tailed Interval

95% Equal -Tail Area interval is (0.02, 0.41)
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Monte Carlo Version
Suppose we don’t have  is a simple form, but we do have samples 
from 

π(θ ∣ y) θ1, … , θT
π(θ ∣ y)

We can use these samples to obtain Monte Carlo (MC) estimates of posterior
summaries

θ̂ = E[θ ∣ y] ≈
1

T

T

∑
t=1

θt

what about MC quantile estimates?

Find the 2.5th and 97.5th percentile from the empirical distribution

theta = rbeta(1000, a + y, b + n - y)1
quantile(theta, c(0.025, 0.975))2

      2.5%      97.5% 
0.02141993 0.39572970 
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Equal-Tail Interval

Note there are values of  outside the quantile-based credible interval, with higher
density than some values inside the interval.

θ
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HPD Region
A  highest posterior density (HPD) region is a subset  of the
parameter space  such that

100 × (1 − α) s(y)
Θ

1. ; andPr(θ ∈ s(y) ∣ y) = 1 − α

2. If  and , then  (highest density set)θa ∈ s(y) θb ∉ s(y) p(θa ∣ y) > p(θb ∣ y)

 All points in a HPD region have higher posterior density than points outside the
region.
⇒

The basic idea is to gradually move a horizontal line down across the density,
including in the HPD region all values of  with a density above the horizontal line.θ

Stop moving the line down when the posterior probability of the values of  in the
region reaches .

θ
1 − α
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Simulation Based using the coda
Package

 

 

library(coda)1
HPDinterval(as.mcmc(theta))2

           lower     upper
var1 0.005930904 0.3669906
attr(,"Probability")
[1] 0.95

20

https://sta702-F23.github.io/website/

https://sta702-f23.github.io/website/


Properties of HPD Sets
Shortest length interval (or volume) for the given coverage

Equivalent to Equal-Tail Intervals if the posterior is unimodal and symmetric

May not be an interval if the posterior distribution is multi-modal

In general, not invariant under monotonic transformations of . (Why?)θ

More computationally intensive to solve exactly!

See “The Bayesian Choice” by Christian Robert  for more info on Loss Functions for Interval EstimationSection 5.5.5

21

https://sta702-F23.github.io/website/

https://link-springer-com.proxy.lib.duke.edu/content/pdf/10.1007%2F0-387-71599-1.pdf
https://sta702-f23.github.io/website/


Connections between Bayes and MLE
Based Frequentist Inference
Berstein von Mises (BvM) Theorems) aka Bayesian Central Limit Theorems

examine limiting form of the posterior distribution  as π(θ ∣ y) n → ∞

 goes to a Gaussian under regularity conditionsπ(θ ∣ y)

centered at the MLE

variance given by the inverse of the Expected Fisher Information (var of MLE)

The most important implication of the BvM is that Bayesian inference is
asymptotically correct from a frequentist point of view

Used to justify Normal Approximations to the posterior distribution (eg Laplace
approximations)
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Model Misspeci�cation ?
We might have chosen a bad sampling model/likelihood

posterior still converges to a Gaussian centered at the MLE under the misspeci�ed
model, but wrong variance

95% Bayesian credible sets do not have correct frequentist coverage

See  for more rigorous treatment if interestedKlein & van der Vaart

parametric model is “close” to the true data-generating process

model diagnostics & changing the model can reduce the gap between model we are
using and the true data generating process
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