Basics of Bayesian Statistics

STA 702: Lecture 1

Merlise Clyde Duke University

1

Ingredients

- 1. Prior Distribution $\pi(\theta)$ for unknown θ
- 2. Likelihood Function $\mathcal{L}(\theta | y) \propto p(y | \theta)$ (sampling model)
- 3. Posterior Distribution

$$
\pi(\theta|y) = \frac{\pi(\theta)p(y \mid \theta)}{\int_{\Theta}\pi(\theta)p(y \mid \theta) \mathrm{d}\theta} = \frac{\pi(\theta)p(y \mid \theta)}{p(y)}
$$

4. Loss Function Depends on what you want to report; estimate of θ , predict future Y_{n+1} , etc

Posterior Depends on Likelihoods

Likelihood function is defined up to a consant

$$
c \, \mathcal{L}(\theta \mid Y) = p(y \mid \theta)
$$

• Bayes' Rule

$$
\pi(\theta|y) = \frac{\pi(\theta)p(y \mid \theta)}{\int_{\Theta}\pi(\theta)p(y \mid \theta) \mathrm{d}\theta} = \frac{\pi(\theta)c\mathcal{L}(\theta \mid y)}{\int_{\Theta}\pi(\theta)c\mathcal{L}(\theta \mid y) \mathrm{d}\theta} = \frac{\pi(\theta)\mathcal{L}(\theta \mid y)}{m(y)}
$$

 \bullet $m(y)$ is proportional to the marginal distribution of data

$$
m(y) = \int_{\Theta} \pi(\theta) \mathcal{L}(\theta \mid y) \mathrm{d} \theta
$$

• marginal likelihood of this model or "evidence"

Note: the marginal likelihood and maximized likelihood are *very* different! [https://sta702-F23.github.io/website/](https://sta702-f23.github.io/website/)

Binomial Example

- Binomial sampling $Y \mid n, \theta \sim \text{Binomial}(n, \theta)$
- Probability Mass Function

$$
p(y\mid \theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}
$$

- Likelihood $\mathcal{L}(\theta) = \theta^y (1-\theta)^{n-y}$
- MLE θ of Binomial is $\bar{y}=y/n$ proportion of successes $\hat{\hat{\bm{\rho}}}$. $\hat{\theta}$ of Binomial is $\bar{y}=y/n$
- Recall Derivation!

Marginal Likelihood

$$
m(y)=\int_{\Theta}\mathcal{L}(\theta)\pi(\theta)\text{d}\theta=\int_{\Theta}\theta^y(\mathbf{1}-\theta)^{n-y}\pi(\theta)\text{d}\theta
$$

"Averaging" of likelihood over prior $\pi(\theta)=1$

Binomial Example

- Prior $\theta \sim \mathsf{U}(0,1)$ or $\pi(\theta) = 1$, for $\theta \in (0,1)$
- Marginal $m(y) = \int_0^1$ $\int_0^1\theta^y(1-\theta)^{n-y}\,1\,{\mathrm d}\theta.$
- Special function known as the beta function see Rudin

$$
B(a,b)=\int_0^1\theta^{a-1}(1-\theta)^{b-1}\,\mathrm{d}\theta
$$

Posterior Distribution

$$
\pi(\theta\mid y)=\frac{\theta^{(y+1)-1}(1-\theta)^{(n-y+1)-1}}{B(y+1,n-y+1)}
$$

$$
\theta \mid y \sim \mathsf{Beta}(y+1,n-y+1)
$$

Beta Prior Distributions

 $Beta(a, b)$ is a probability density function (pdf) on (0,1),

$$
\pi(\theta)=\frac{1}{B(a,b)}\theta^{a-1}(1-\theta)^{b-1}
$$

• Use the kernel trick to find the posterior

 $\pi(\theta | y) \propto \mathcal{L}(\theta | y) \pi(\theta)$

- Write down likelihood and prior (ignore constants wrt θ)
- Recognize kernel of density
- Figure out normalizing constant/distribution

Prior to Posterior Updating Binomial Data

- Prior Beta (a, b)
- Posterior Beta $(a + y, b + n y)$
- Conjugate prior & posterior distribution are in the same family of distributions, (Beta)
- Simple updating of information from the prior to posterior
	- $a + b$ "prior sample size" (number of trials in a hypothetical experiment)
	- \bullet α "number of successes"
	- \blacksquare b "number of failures"
- prior elicitation (process of choosing the prior hyperparamters) based on historic or imaginary data

9

Summaries & Properties

E

Properties

Posterior mean \bullet

$$
\tilde{\theta}=\frac{n_0}{n_0+n}\theta_0+\frac{n}{n_0+n}\hat{\theta}
$$

- in finite samples we get **shrinkage**: posterior mean pulls the MLE toward the prior mean; amount depends on prior sample size n_0 and data sample size n
- **regularization** effect to reduce Mean Squared Error for estimation with small sample sizes and noisy data
	- **i** introduces some bias (in the frequentist sense) due to prior mean θ_0
	- reduces variance (bias-variance trade-off)
- helpful in the Binomial case, when sample size is small or $\theta_{\rm true} \approx 0$ (rare events) and $\hat{\theta}=0$ (inbalanced categorical data)
- as we get more information from the data $n\to\infty$ we have $\tilde\theta\to\hat\theta$ and $\mathsf{consistency}$! As $n\to\infty, \mathsf{E}[\tilde{\theta}] \to \theta_{\rm true}$ $\tilde{\theta} \rightarrow \hat{\theta}$ $\frac{11}{31}$

Some possible prior densities

 θ

[https://sta702-F23.github.io/website/](https://sta702-f23.github.io/website/)

E.

Prior Choice

- Is the uniform prior $Beta(1, 1)$ non-informative?
	- No- if $y=0$ (or n) sparse/rare events saying that we have a prior "historical" sample with 1 success and 1 failure ($a=1$ and $b=1$) can be very informative
- What about a uniform prior on the log odds? $\eta \equiv \log\left(\frac{\theta}{1-\theta}\right)$? $\frac{\theta}{1-\theta}$)

$$
\pi(\eta) \propto 1, \qquad \eta \in \mathbb{R}
$$

- Is this a **proper** prior distribution?
- what would be induced measure for θ ?
- Find Jacobian (exercise!)

$$
\pi(\theta) \propto \theta^{-1}(1-\theta)^{-1}, \qquad \theta \in (0,1)
$$

■ limiting case of a Beta $a \to 0$ and $b \to 0$ (Haldane's prior)

Formal Bayes

- use of improper prior and turn the Bayesian crank
- calculate $m(y)$ and renormalize likelihood times "improper prior" if $m(y)$ is finite
- formal posterior is $\mathsf{Beta}(y, n-y)$ and reasonable only if $y\neq 0$ or $y\neq n$ as $B(0,-)$ and $\overset{\circ}{B}(-,0)$ (normalizing constant) are undefined!
- no shrinkage $\mathsf{E}[\theta \mid y] = \frac{y}{n}$ \boldsymbol{n} = \tilde{z} $\tilde{\theta} =$ $\hat{\hat{\bm{\rho}}}$ θ

Invariance

Jeffreys argues that priors should be invariant to transformations to be non- \bullet informative.... i.e. if we reparameterize with $\theta = h(\rho)$ then the rule should be that

$$
\pi_\theta(\theta) = \left|\frac{d\rho}{d\theta}\right| \pi_\rho(h^{-1}(\theta))
$$

- Jefferys' rule is to pick $\pi(\rho) \propto (I(\rho))^{1/2}$
- Expected Fisher Information for ρ

$$
\pi_{\theta}(\theta) = \left| \frac{d\rho}{d\theta} \right| \pi_{\rho}(h^{-1}(\theta))
$$
\n
$$
\propto (I(\rho))^{1/2}
$$
\n
$$
\text{on for } \rho
$$
\n
$$
I(\rho) = -\mathsf{E}\left[\frac{d^2 \log(\mathcal{L}(\rho))}{d^2 \rho}\right]
$$
\n
$$
\cdot(\theta) \propto \theta^{-1/2} (1 - \theta)^{-1/2}
$$
\n
$$
\text{in (1/2, 1/2)}
$$
\n
$$
\text{https://sta702-F23.github.io/website/}
$$

- For the Binomial example $\pi(\theta) \propto \theta^{-1/2} (1-\theta)^{-1/2}$
- Thus Jefferys' prior is a Beta $(1/2, 1/2)$

Chain Rule!

- Find Jefferys' prior for θ where $Y\sim\mathsf{Ber}(\theta)$
- Find information matrix $I(\rho)$ for $\rho = \rho(\theta)$ from $I(\theta)$
- Show that the prior satisfies the invariance property!
- Find Jeffreys' prior for $\rho = \log(\frac{\theta}{1-\theta})$ $\overline{1-\theta}$)

[https://sta702-F23.github.io/website/](https://sta702-f23.github.io/website/)

