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Ingredients
1. Prior Distribution  for unknown π(θ) θ

2. Likelihood Function  (sampling model)L(θ ∣ y) ∝ p(y ∣ θ)

3. Posterior Distribution

π(θ|y) =
π(θ)p(y ∣ θ)

∫Θ π(θ)p(y ∣ θ)dθ
=

π(θ)p(y ∣ θ)

p(y)

4. Loss Function Depends on what you want to report;
estimate of , predict future , etcθ Yn+1
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Posterior Depends on Likelihoods
Likelihood function is de�ned up to a consant

cL(θ ∣ Y ) = p(y ∣ θ)

Bayes’ Rule

π(θ|y) =
π(θ)p(y ∣ θ)

∫Θ π(θ)p(y ∣ θ)dθ
=

π(θ)cL(θ ∣ y)

∫Θ π(θ)cL(θ ∣ y)dθ
=

π(θ)L(θ ∣ y)

m(y)

 is proportional to the marginal distribution of datam(y)

m(y) = ∫
Θ
π(θ)L(θ ∣ y)dθ

marginal likelihood of this model or “evidence”

Note: the marginal likelihood and maximized likelihood are very different!
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Binomial Example
Binomial sampling Y ∣ n, θ ∼ Binomial(n, θ)

Probability Mass Function

p(y ∣ θ) = (
n

y
)θy(1 − θ)n−y

Likelihood L(θ) = θy(1 − θ)n−y

MLE  of Binomial is  proportion of successesθ̂ ȳ = y/n

Recall Derivation!
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Marginal Likelihood

“Averaging” of likelihood over prior 

m(y) = ∫
Θ

L(θ)π(θ)dθ = ∫
Θ

θy(1 − θ)n−yπ(θ)dθ

π(θ) = 1
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Binomial Example
Prior  or θ ∼ U(0, 1) π(θ) = 1, for θ ∈ (0, 1)

Marginal m(y) = ∫ 1
0 θy(1 − θ)n−y 1 dθ

Special function known as the beta function - see Rudin

B(a, b) = ∫
1

0

θa−1(1 − θ)b−1 dθ

Posterior Distribution

π(θ ∣ y) =
θ(y+1)−1(1 − θ)(n−y+1)−1

B(y + 1,n − y + 1)

θ ∣ y ∼ Beta(y + 1,n − y + 1)
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Beta Prior Distributions
 is a probability density function (pdf) on (0,1),Beta(a, b)

π(θ) =
1

B(a, b)
θa−1(1 − θ)b−1

Use the kernel trick to �nd the posterior

π(θ ∣ y) ∝ L(θ ∣ y)π(θ)

Write down likelihood and prior (ignore constants wrt )θ

Recognize kernel of density

Figure out normalizing constant/distribution
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Try it!
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Prior to Posterior Updating Binomial Data
Prior Beta(a, b)

Posterior Beta(a + y, b + n − y)

Conjugate prior & posterior distribution are in the same family of distributions,
(Beta)

Simple updating of information from the prior to posterior

 “prior sample size” (number of trials in a hypothetical experiment)a + b

 “number of successes”a

 “number of failures”b

prior elicitation (process of choosing the prior hyperparamters) based on historic or
imaginary data
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Summaries & Properties
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Properties
Posterior mean

~
θ =

n0

n0 + n
θ0 +

n

n0 + n
θ̂

in �nite samples we get shrinkage: posterior mean pulls the MLE toward the prior
mean; amount depends on prior sample size  and data sample size n0 n

regularization effect to reduce Mean Squared Error for estimation with small
sample sizes and noisy data

introduces some bias (in the frequentist sense) due to prior mean θ0

reduces variance (bias-variance trade-off)

helpful in the Binomial case, when sample size is small or  (rare events) and

 (inbalanced categorical data)

θtrue ≈ 0

θ̂ = 0

as we get more information from the data  we have  and consistency !

As 

n → ∞
~
θ → θ̂

n → ∞, E[
~
θ] → θtrue
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Some possible prior densities
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Prior Choice
Is the uniform prior  non-informative?Beta(1, 1)

No- if  (or ) sparse/rare events saying that we have a prior “historical”
sample with 1 success and 1 failure (  and  ) can be very informative

y = 0 n
a = 1 b = 1

What about a uniform prior on the log odds? ?η ≡ log ( θ
1−θ

)

π(η) ∝ 1, η ∈ R

Is this a proper prior distribution?

what would be induced measure for ?θ

Find Jacobian (exercise!)

π(θ) ∝ θ−1(1 − θ)−1, θ ∈ (0, 1)

limiting case of a Beta  and  (Haldane’s prior)a → 0 b → 0
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Formal Bayes
use of improper prior and turn the Bayesian crank

calculate  and renormalize likelihood times
“improper prior” if  is �nite

m(y)
m(y)

formal posterior is  and reasonable only if
 or  as  and  (normalizing

constant) are unde�ned!

Beta(y,n − y)
y ≠ 0 y ≠ n B(0, −) B(−, 0)

no shrinkage E[θ ∣ y] =
y

n
=

~
θ = θ̂
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Invariance
Jeffreys argues that priors should be invariant to transformations to be non-
informative. . . . i.e. if we reparameterize with  then the rule should be thatθ = h(ρ)

πθ(θ) =
dρ

dθ
πρ(h−1(θ))∣ ∣Jefferys’ rule is to pick π(ρ) ∝ (I(ρ))1/2

Expected Fisher Information for ρ

I(ρ) = −E [
d2 log(L(ρ))

d2ρ
]

For the Binomial example π(θ) ∝ θ−1/2(1 − θ)−1/2

Thus Jefferys’ prior is a Beta(1/2, 1/2)
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Why ?
Chain Rule!

Find Jefferys’ prior for  where θ Y ∼ Ber(θ)

Find information matrix  for  from I(ρ) ρ = ρ(θ) I(θ)

Show that the prior satis�es the invariance property!

Find Jeffreys’ prior for ρ = log( θ
1−θ

)
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