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Ingredients

1. Prior Distribution 7r(€) for unknown @
2. Likelihood Function L(8 | y) « p(y | 8) (sampling model)

3. Posterior Distribution

r(0ly) = m(@)p(y |0) _ 7(0)p(y | 0)
Jom(0)p(y | 6)do p(y)

4. Loss Function Depends on what you want to report;
estimate of 6, predict future Y,,, 1, etc
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Posterior Depends on Likelihoods

e Likelihood function is defined up to a consant
cL(0]|Y)=p(y|0)
e Bayes’ Rule

m(0)p(y | 0) m(0)cL(0 | ) m(0)L(0 | y)

"W fom@py [000 ~ [or@eL@ w0 mly

e m(y) is proportional to the marginal distribution of data

m(y) = /@ r(6)L(6 | 4)do

e marginal likelihood of this model or “evidence”

Note: the marginal likelihood and maximized likelihood are very different!
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Binomial Example

e Binomial samplingY | n, 0 ~ Binomial(n, 6)

e Probability Mass Function

n
Y

pw|6) = ()era -

e Likelihood L(0) =6Y(1—0)"Y
e MLE é of Binomialisy = y/n proportion of successes

e Recall Derivation!
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Marginal Likelihood
m(y) = /@ C(0)r(0)d0 — /@ 0¥ (1— 0)"Vr (0)d0

“Averaging” of likelihood over prior 7r(6) = 1

m(y)
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Binomial Example

e Priorf ~U(0,1)orm(#) =1, forf e (0,1)
e Marginalm(y) = fol 6Y(1 —0)"v1d6

e Special function known as the beta function - see Rudin
1
B(a,b) = / 6°-1(1 — 9)>1 do
0

e Posterior Distribution

g(y—l—l)—l(l _ 9) (n—y+1)—1
Bly+1l,n—y+1)

(0| y) =

0|y~ Beta(ly+1,n—y+1)
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Beta Prior Distributions

Beta(a, b) is a probability density function (pdf) on (0,1),

1 a—1 —1
() = Bla.b) 9°1(1 — 6)°

Use the kernel trick to find the posterior
m(0 | y) x L(O|y)m(0)

Write down likelihood and prior (ignore constants wrt 6)

Recognize kernel of density

Figure out normalizing constant/distribution
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Try it
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Prior to Posterior Updating Binomial Data

e Prior Beta(a,b)
e Posterior Beta(a + y,b+n — y)

e Conjugate prior & posterior distribution are in the same family of distributions,
(Beta)

e Simple updating of information from the prior to posterior
= a + b“prior sample size” (humber of trials in a hypothetical experiment)
= g “number of successes”
= b “number of failures”

e prior elicitation (process of choosing the prior hyperparamters) based on historic or
imaginary data
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Summaries & Properties
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Properties

e Posterior mean

Mg+ " §
ng +n ng + N

™
|

e in finite samples we get shrinkage: posterior mean pulls the MLE toward the prior
mean; amount depends on prior sample size ng and data sample sizen

e regularization effect to reduce Mean Squared Error for estimation with small
sample sizes and noisy data

= introduces some bias (in the frequentist sense) due to prior mean 6
= reduces variance (bias-variance trade-off)
e helpful in the Binomial case, when sample size is small or Oy = 0 (rare events) and

6 = 0 (inbalanced categorical data)

e aswe get more information from the datan — oo we have 0 — Hand consistency !

~

Asn — 00, E[0] — Orue
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Some possible prior densities
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Prior Choice

e Is the uniform prior Beta(1, 1) non-informative?

= No-if y = 0 (or n) sparse/rare events saying that we have a prior “historical”
sample with 1 success and 1 failure(a = 1 and b = 1) can be very informative

e What about a uniform prior on the log odds? n = log (%)?

() xl, neR

|s this a proper prior distribution?

what would be induced measure for 6?

Find Jacobian (exercise!)

70 x 0711 -0, e (0,1)

limiting case of aBetaa — 0and b — 0 (Haldane’s prior)
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Formal Bayes

e use of improper prior and turn the Bayesian crank

e calculate m(y) and renormalize likelihood times
“improper prior” if m(y) is finite

o formal posterior is Beta(y, n — y) and reasonable only if
y # 0ory # nas B(0,—) and B(—, 0) (normalizing
constant) are undefined!

e noshrinkageE[f | y] = £ =0 = H

14


https://sta702-f23.github.io/website/

15

Invariance

o Jeffreys argues that priors should be invariant to transformations to be non-

informative. ... i.e. if we reparameterize with @ = h(p) then the rule should be that
dp ~1
mo(8) = | <2 |m, (1 (0))

Jefferys’ rule is to pick (p) o< (I(p))*/?

Expected Fisher Information for p

d” log(L(p)) ]

I) €| 57

For the Binomial example 7(#) oc §~/2(1 — §)~1/2
Thus Jefferys’ prioris a Beta(1/2,1/2)
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Why ?

Chain Rule!

e Find Jefferys’ prior for § where Y ~ Ber(6)
e Find information matrix I(p) for p = p(0) from I(6)
e Show that the prior satisfies the invariance property!

e Find Jeffreys’ prior for p = log(%;)
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