Basics of Bayesian Statistics

STA 702: Lecture 1

Merlise Clyde
Duke University

Ingredients

- 1. Prior Distribution $\pi(\theta)$ for unknown θ
- 2. Likelihood Function $\mathcal{L}(\theta \mid y) \propto p(y \mid \theta)$ (sampling model)
- 3. Posterior Distribution

$$\pi(heta|y) = rac{\pi(heta)p(y\mid heta)}{\int_{\Theta}\pi(heta)p(y\mid heta)\mathrm{d} heta} = rac{\pi(heta)p(y\mid heta)}{p(y)}$$

4. Loss Function Depends on what you want to report; estimate of θ , predict future Y_{n+1} , etc

Posterior Depends on Likelihoods

Likelihood function is defined up to a consant

$$c\,\mathcal{L}(heta\mid Y) = p(y\mid heta)$$

• Bayes' Rule

$$\pi(heta|y) = rac{\pi(heta)p(y\mid heta)}{\int_{\Theta}\pi(heta)p(y\mid heta)\mathrm{d} heta} = rac{\pi(heta)c\mathcal{L}(heta\mid y)}{\int_{\Theta}\pi(heta)c\mathcal{L}(heta\mid y)\mathrm{d} heta} = rac{\pi(heta)\mathcal{L}(heta\mid y)}{m(y)}$$

• m(y) is proportional to the marginal distribution of data

$$m(y) = \int_{\Theta} \pi(heta) \mathcal{L}(heta \mid y) \mathrm{d} heta$$

• marginal likelihood of this model or "evidence"

Note: the marginal likelihood and maximized likelihood are *very* different!

Binomial Example

- ullet Binomial sampling $Y \mid n, heta \sim \mathsf{Binomial}(n, heta)$
- Probability Mass Function

$$p(y \mid heta) = inom{n}{y} heta^y (1- heta)^{n-y}$$

- Likelihood $\mathcal{L}(\theta) = \theta^y (1-\theta)^{n-y}$
- MLE $\hat{ heta}$ of Binomial is $ar{y}=y/n$ proportion of successes
- Recall Derivation!

Marginal Likelihood

$$m(y) = \int_{\Theta} \mathcal{L}(heta)\pi(heta)\mathrm{d} heta = \int_{\Theta} heta^y (1- heta)^{n-y}\pi(heta)\mathrm{d} heta$$

"Averaging" of likelihood over prior $\pi(heta)=1$

Binomial Example

- Prior $heta \sim \mathsf{U}(0,1)$ or $\pi(heta) = 1, \quad ext{for } heta \in (0,1)$
- Marginal $m(y) = \int_0^1 heta^y (1- heta)^{n-y} \, 1 \, \mathrm{d} heta$
- Special function known as the beta function see Rudin

$$B(a,b)=\int_0^1 heta^{a-1}(1- heta)^{b-1}\,\mathrm{d} heta$$

Posterior Distribution

$$\pi(heta \mid y) = rac{ heta^{(y+1)-1}(1- heta)^{(n-y+1)-1}}{B(y+1,n-y+1)}$$

$$heta \mid y \sim \mathsf{Beta}(y+1, n-y+1)$$

Beta Prior Distributions

Beta(a,b) is a probability density function (pdf) on (0,1),

$$\pi(heta)=rac{1}{B(a,b)} heta^{a-1}(1- heta)^{b-1}$$

Use the kernel trick to find the posterior

$$\pi(\theta \mid y) \propto \mathcal{L}(\theta \mid y)\pi(\theta)$$

- Write down likelihood and prior (ignore constants wrt θ)
- Recognize kernel of density
- Figure out normalizing constant/distribution

Try it!

Prior to Posterior Updating Binomial Data

- Prior Beta(a, b)
- Posterior Beta(a+y,b+n-y)
- Conjugate prior & posterior distribution are in the same family of distributions, (Beta)
- Simple updating of information from the prior to posterior
 - a + b "prior sample size" (number of trials in a hypothetical experiment)
 - a "number of successes"
 - *b* "number of failures"
- prior elicitation (process of choosing the prior hyperparamters) based on historic or imaginary data

Summaries & Properties

Properties

Posterior mean

$$ilde{ heta} = rac{n_0}{n_0+n} heta_0 + rac{n}{n_0+n}\hat{ heta}_0$$

- in finite samples we get **shrinkage**: posterior mean pulls the MLE toward the prior mean; amount depends on prior sample size n_0 and data sample size n
- regularization effect to reduce Mean Squared Error for estimation with small sample sizes and noisy data
 - ullet introduces some bias (in the frequentist sense) due to prior mean $heta_0$
 - reduces variance (bias-variance trade-off)
- helpful in the Binomial case, when sample size is small or $heta_{
 m true} pprox 0$ (rare events) and $\hat{ heta}=0$ (inbalanced categorical data)
- as we get more information from the data $n o \infty$ we have $ilde{ heta} o \hat{ heta}$ and consistency! As $n o \infty$, $\mathsf{E}[ilde{ heta}] o heta_{\mathrm{true}}$

Some possible prior densities

Prior Choice

- Is the uniform prior Beta(1,1) non-informative?
 - No- if y=0 (or n) sparse/rare events saying that we have a prior "historical" sample with 1 success and 1 failure (a=1 and b=1) can be very informative
- What about a uniform prior on the log odds? $\eta \equiv \log\left(\frac{\theta}{1-\theta}\right)$?

$$\pi(\eta) \propto 1, \qquad \eta \in \mathbb{R}$$

- Is this a proper prior distribution?
- what would be induced measure for θ ?
- Find Jacobian (exercise!)

$$\pi(heta) \propto heta^{-1} (1- heta)^{-1}, \qquad heta \in (0,1)$$

ullet limiting case of a Beta a o 0 and b o 0 (Haldane's prior)

Formal Bayes

- use of improper prior and turn the Bayesian crank
- calculate m(y) and renormalize likelihood times "improper prior" if m(y) is finite
- formal posterior is $\mathsf{Beta}(y,n-y)$ and reasonable only if $y \neq 0$ or $y \neq n$ as B(0,-) and B(-,0) (normalizing constant) are undefined!
- ullet no shrinkage $\mathsf{E}[heta \mid y] = rac{y}{n} = ilde{ heta} = \hat{ heta}$

Invariance

• Jeffreys argues that priors should be invariant to transformations to be non-informative. . . . i.e. if we reparameterize with heta=h(
ho) then the rule should be that

$$\pi_{ heta}(heta) = \left|rac{d
ho}{d heta}
ight|\pi_{
ho}(h^{-1}(heta))$$

- Jefferys' rule is to pick $\pi(
 ho) \propto (I(
 ho))^{1/2}$
- Expected Fisher Information for ρ

$$I(
ho) = -\mathsf{E}\left[rac{d^2\log(\mathcal{L}(
ho))}{d^2
ho}
ight]$$

- ullet For the Binomial example $\pi(heta) \propto heta^{-1/2} (1- heta)^{-1/2}$
- Thus Jefferys' prior is a $\mathsf{Beta}(1/2,1/2)$

Why?

Chain Rule!

- ullet Find Jefferys' prior for heta where $Y \sim \mathsf{Ber}(heta)$
- Find information matrix $I(\rho)$ for $\rho=\rho(\theta)$ from $I(\theta)$
- Show that the prior satisfies the invariance property!
- Find Jeffreys' prior for $ho = \log(\frac{\theta}{1-\theta})$

