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 Statistical Science

 2003, Vol. 18, No. 1, 1-32

 ? Institute of Mathematical Statistics, 2003

 Could Fisher, Jeffreys and Neyman Have
 Agreed on Testing?
 James 0. Berger

 Abstract. Ronald Fisher advocated testing using p-values, Harold Jeffreys

 proposed use of objective posterior probabilities of hypotheses and Jerzy

 Neyman recommended testing with fixed error probabilities. Each was quite

 critical of the other approaches. Most troubling for statistics and science is

 that the three approaches can lead to quite different practical conclusions.

 This article focuses on discussion of the conditional frequentist approach to

 testing, which is argued to provide the basis for a methodological unification

 of the approaches of Fisher, Jeffreys and Neyman. The idea is to follow Fisher

 in using p-values to define the "strength of evidence" in data and to follow

 his approach of conditioning on strength of evidence; then follow Neyman by

 computing Type I and Type II error probabilities, but do so conditional on the

 strength of evidence in the data. The resulting conditional frequentist error

 probabilities equal the objective posterior probabilities of the hypotheses

 advocated by Jeffreys.

 Key words and phrases: p-values, posterior probabilities of hypotheses,

 Type I and Type II error probabilities, conditional testing.

 1. INTRODUCTION

 1.1 Disagreements and Disagreements

 Ronald Fisher, Harold Jeffreys and Jerzy Neyman

 disagreed as to the correct foundations for statistics,

 but often agreed on the actual statistical procedure

 to use. For instance, all three supported use of the

 same estimation and confidence procedures for the

 elementary normal linear model, disagreeing only on

 the interpretation to be given. As an example, Fisher,

 Jeffreys and Neyman agreed on (xi - 1.96 i x +

 1.96=) as the 95% confidence interval for a normal

 mean, but insisted on assigning it fiducial, objective

 Bayesian and frequentist interpretations, respectively.

 While the debate over interpretation can be strident,

 statistical practice is little affected as long as the

 reported numbers are the same.

 James 0. Berger is the Arts and Sciences Professor

 of Statistics in the Institute of Statistics and Decision

 Sciences at Duke University, Durham, North Carolina

 27708-0251 (e-mail: berger@stat.duke.edu).

 The situation in testing is quite different. For many

 types of testing, Fisher, Jeffreys and Neyman dis-

 agreed as to the basic numbers to be reported and

 could report considerably different conclusions in ac-

 tual practice.

 EXAMPLE 1. Suppose the data, X1, ..., X,, are

 i.i.d. from the A(0, a2) distribution, with a2 known,

 and n = 10, and that it is desired to test Ho: 0 = 0
 versus H1: 0 0. If z =V /a = 2.3 (or z = 2.9):

 * Fisher would report the p-values p = 0.021 (or p =

 0.0037).

 * Jeffreys would report the posterior probabilities

 of Ho, Pr(Hojxj, . .. ., xn) = 0.28 [or Pr(Ho lx1, . . *,
 xn) = 0.11], based on assigning the hypotheses
 equal prior probabilities of 1/2 and using a conven-

 tional Cauchy(0, a) prior on the alternative.

 * Neyman, had he prespecified Type I error probability

 a = 0.05, would report a = 0.05 in either case (and

 a Type II error probability /B or power function).

 The discrepancy between the numbers reported by

 Fisher and Jeffreys are dramatic in both cases, while

 the discrepancy between the numbers reported by

 1
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 2 J. 0. BERGER

 Fisher and Neyman are dramatic primarily in the sec-

 ond case. Even if one goes past the raw numbers

 and considers the actual "scales of evidence" recom-

 mended by the three, significant differences remain

 (see, e.g., Efron and Gous, 2001).

 The disagreement occurs primarily when testing a

 "precise" hypothesis as above. When testing a one-

 sided hypothesis, such as Ho: 0 < 0, the numbers re-
 ported by Fisher and Jeffreys would often be simi-

 lar (see Casella and Berger, 1987, for discussion-but

 see Berger and Mortera, 1999, for an alternative per-

 spective). Here precise hypothesis does not necessarily

 mean a point null hypothesis; the discussion applies

 equally well to a small interval null hypothesis (see

 Berger and Delampady, 1987). Also, the null hypoth-

 esis can have nuisance parameters that are common to

 the alternative hypothesis.

 We begin, in Section 2, by reviewing the approaches

 to testing espoused by Fisher, Jeffreys and Neyman

 and the criticisms each had of the other approaches.

 The negative impact upon science that has resulted

 from the disagreement is also discussed. In Section 3,

 we describe the conditional frequentist testing para-

 digm that is the basis of the unification of the three

 viewpoints. Section 4 discusses how this would have

 allowed Fisher, Jeffreys and Neyman to simply dis-

 agree-that is, to report the same numbers, though as-

 signing them differing interpretations. Section 5 dis-

 cusses various generalizations of the unified approach.

 Before beginning, a few caveats are in order. The

 first is about the title of the article. Fisher, Jeffreys

 and Neyman all held very strong opinions as to the

 appropriateness of their particular views of statistics,

 and it is unlikely that they would have personally

 reached agreement on this issue. What we are really

 discussing, therefore, is the possibility of a unification

 being achieved in which the core principles of each of
 their three schools are accommodated.

 Another caveat is that this is not written as a his-

 torical work and quotations justifying the stated posi-
 tions of Fisher, Jeffreys and Neyman are not included.

 Key books and publications of the three that outline

 their positions and give their criticisms of the other

 approaches include Fisher (1925, 1935, 1955, 1973),

 Neyman and Pearson (1933), Neyman (1961, 1977)

 and Jeffreys (1961). Other references and much use-

 ful historical discussion can be found, for instance, in

 Morrison and Henkel (1970), Spielman (1974, 1978),

 Carlson (1976), Savage (1976), Hall and Selinger
 (1986), Zabell (1992), Lehmann (1993), Johnstone

 (1997), Barnett (1999) and Hubbard (2000). Further-

 more, Fisher, Jeffreys and Neyman were statisticians

 of great depth and complexity, and their actual view-

 points toward statistics were considerably more subtle

 than described herein. Indeed, the names Fisher, Jef-
 freys and Neyman will often be used more as a label for

 the schools they founded than as specific references to

 the individuals. It is also for this reason that we discuss

 Neyman testing rather than the more historically appro-

 priate Neyman-Pearson testing; Egon Pearson seemed

 to have a somewhat eclectic view of statistics (see, e.g.,

 Pearson, 1955, 1962) and is therefore less appropriate

 as a label for the "pure" frequentist philosophy of test-
 ing.

 A final caveat is that we mostly avoid discussion of

 the very significant philosophical differences between

 the various schools (cf. Braithwaite, 1953; Hacking,

 1965; Kyburg, 1974; Seidenfeld, 1979). We focus less

 on "what is correct philosophically?" than on "what is

 correct methodologically?" In part, this is motivated

 by the view that professional agreement on statistical
 philosophy is not on the immediate horizon, but this

 should not stop us from agreeing on methodology,

 when possible, and, in part, this is motivated by the
 belief that optimal general statistical methodology

 must be simultaneously interpretable from the differing
 viewpoints of the major statistical paradigms.

 2. THE THREE APPROACHES AND

 CORRESPONDING CRITICISMS

 2.1 The Approaches of Fisher, Jeffreys
 and Neyman

 In part to set notation, we briefly review the three

 approaches to testing in the basic scenario of testing
 simple hypotheses.

 Fisher's significance testing. Suppose one observes

 data X- f(x 0) and is interested in testing Ho
 0 = So. Fisher would proceed by:

 * Choosing a test statistic T = t (X), large values of T

 reflecting evidence against Ho.
 * Computing the p-value p = Po(t(X) > t(x)), re-

 jecting Ho if p is small. (Here, and throughout the
 paper, we let X denote the data considered as a ran-

 dom variable, with x denoting the actual observed
 data.)

 A typical justification that Fisher would give for this
 procedure is that the p-value can be viewed as an index

 of the "strength of evidence" against Ho, with small
 p indicating an unlikely event and, hence, an unlikely
 hypothesis.
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 COULD FISHER, JEFFREYS AND NEYMAN HAVE AGREED? 3

 Neyman-Pearson hypothesis testing. Neyman felt

 that one could only test a null hypothesis, Ho: 0 = o,
 versus some alternative hypothesis, for instance, H1

 0 = 01. He would then proceed by:

 * Rejecting Ho if T > c and accepting otherwise,
 where c is a pre-chosen critical value.

 * Computing Type I and Type II error probabilities,

 a = Po(rejecting Ho) and P = PI (accepting Ho).

 Neyman's justification for this procedure was the fre-

 quentist principle, which we state here in the form that

 is actually of clear practical value. (See Neyman, 1977.

 Berger, 1985a and b contain discussions relating this

 practical version to more common textbook definitions

 of frequentism.)

 FREQUENTIST PRINCIPLE. In repeated practical

 use of a statistical procedure, the long-run average

 actual error should not be greater than (and ideally

 should equal) the long-run average reported error.

 The Jeifreys approach to testing. Jeffreys agreed
 with Neyman that one needed an alternative hypothesis

 to engage in testing and proceeded by:

 * Defining the Bayes factor (or likelihood ratio)

 B(x) = f(xIOo)/f(xIOI).
 * Rejecting Ho (accepting Ho) as B(x) < 1 [B(x) > 1].
 * Reporting the objective posterior error probabilities

 (i.e., the posterior probabilities of the hypotheses)

 - B(x)
 Pr(Holx) -1? B(x)

 (1)

 (or Pr(HIix) = B(1 )

 based on assigning equal prior probabilities of 1/2 to

 the two hypotheses and applying the Bayes theorem.

 Note that we are using "objective" here as a label to

 distinguish the Jeffreys approach to Bayesian analysis
 from the subjective approach. Whether any approach to
 statistics can really claim to be objective is an issue we

 avoid here; see Berger and Berry (1988) for discussion.

 2.2 Criticisms of the Three Approaches

 The discussion here will be very limited: Fisher,

 Jeffreys and Neyman each had a lot to say about the

 other approaches, but space precludes more than a

 rather superficial discussion of their more popularized
 criticisms.

 Criticisms of the Bayesian approach. Fisher and

 Neyman felt that it is difficult and/or inappropriate to

 choose a prior distribution for Bayesian testing. Some-

 times criticism would be couched in the language of

 objectivity versus subjectivity; sometimes phrased in

 terms of the inadequacy of the older inverse probabil-

 ity version of Bayesianism that had been central to sta-

 tistical inference since Laplace (1812); and sometimes

 phrased in terms of a preference for the frequency

 meaning of probability.

 The comments by Fisher and Neyman against the

 Bayesian approach were typically quite general, as op-

 posed to focusing on the specifics of the developments

 of Jeffreys. For instance, the fact that the methodology

 proposed by Jeffreys can lead to Bayesian confidence

 intervals that are also asymptotically optimal frequen-

 tist confidence intervals (Welch and Peers, 1963) did

 not seem to enter the debate. What could be viewed as

 an analogue of this result for testing will be central to

 our argument.

 Criticisms of Neyman-Pearson testing. Both Fisher

 and Jeffreys criticized (unconditional) Type I and

 Type II errors for not reflecting the variation in evi-

 dence as the data range over the rejection or accep-

 tance regions. Thus, reporting a prespecified a = 0.05

 in Example 1, regardless of whether z = 2 or z = 10,

 seemed highly unscientific to both. Fisher also criti-

 cized Neyman-Pearson testing because of its need for

 an alternative hypothesis and for the associated diffi-

 culty of having to deal with a power function depend-
 ing on (typically unknown) parameters.

 Criticisms of p-values. Neyman criticized p-values

 for violating the frequentist principle, while Jeffreys

 felt that the logic of basing p-values on a tail area

 (as opposed to the actual data) was silly [".... a hy-
 pothesis that may be true may be rejected because it

 has not predicted observable results that have not oc-

 curred" (Jeffreys, 1961)]. More recently-and related

 to both these criticisms-there has been great concern

 that the too-common misinterpretation of p-values as

 error probabilities very often results in considerable

 overstatement of the evidence against Ho; compare Ed-
 wards, Lindman and Savage (1963), Gibbons and Pratt
 (1975), Berger and Sellke (1987), Berger and Delam-

 pady (1987), Delampady and Berger (1990) and even

 the popular press (Matthews, 1998).

 Dramatic illustration of the nonfrequentist nature

 of p-values can be seen from the applet available at
 www.stat.duke.edu/-berger. The applet assumes one
 faces a series of situations involving normal data with
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 4 J. 0. BERGER

 unknown mean 0 and known variance, and tests of

 the form Ho : 0 = 0 versus H1: 0 : 0. The applet
 simulates a long series of such tests and records how

 often Ho is true for p-values in given ranges.
 Use of the applet demonstrates results such as if, in

 this long series of tests, half of the null hypotheses are

 initially true, then, among the subset of tests for which

 the p-value is near 0.05, at least 22%-and typically

 over 50%-of the corresponding null hypotheses will

 be true. As another illustration, Sterne and Davey

 Smith (2001) estimated that roughly 90% of the null
 hypotheses in the epidemiology literature are initially

 true; the applet shows that, among the subset of such

 tests for which the p-value is near 0.05, at least 72%-

 and typically over 90%-of the corresponding null

 hypotheses will be true. The harm from the common

 misinterpretation of p = 0.05 as an error probability is

 apparent.

 2.3 Impact on Science of the Disagreement

 We do not address here the effect on statistics of

 having three (actually more) warring factions, except

 to say the obvious: it has not been good for our

 professional image. Our focus, instead, is on the effect

 that the disagreement concerning testing has had on

 the scientific community.

 Goodman (1999a, b) and Hubbard (2000), elaborat-

 ing on earlier work such as Goodman (1992, 1993)

 and Royall (1997), made a convincing case that the

 disagreement between Fisher and Neyman has had a

 significantly deleterious effect upon the practice of

 statistics in science, essentially because it has led to

 widespread confusion and inappropriate use of test-

 ing methodology in the scientific community. The ar-

 gument is that testers-in applications-virtually al-
 ways utilize p-values, but then typically interpret the

 p-values as error probabilities and act accordingly. The

 dangers in this are apparent from the discussion at the
 end of the last section. Note that this confusion is dif-

 ferent from the confusion between a p-value and the

 posterior probability of the null hypothesis; while the

 latter confusion is also widespread, it is less common
 in serious uses of statistics.

 Fisher and Neyman cannot be blamed for this sit-

 uation: Neyman was extremely clear that one should
 use preexperimentally chosen error probabilities if fre-
 quentist validity is desired, while Fisher was very care-

 ful in distinguishing p-values from error probabilities.
 Concerns about this (and other aspects of the inap-

 propriate use of p-values) have repeatedly been raised
 in many scientific writings. To access at least some of

 the literature, see the following web pages devoted to

 the topic in various sciences:

 Environmental sciences: www.indiana.edu/-stigtsts

 Social sciences: www.coe.tamu.edu/-bthompson

 Wildlife science:

 www.npwrc.usgs.gov/permlhypotest

 www.cnr.colostate.edu/-anderson/null.html.

 It is natural (and common) in these sciences to fault

 the statistics profession for the situation, pointing out

 that common textbooks teach frequentist testing and

 then p-values, without sufficient warning that these

 are completely different methodologies (e.g., without

 showing that a p-value of 0.05 often corresponds

 to a frequentist error probability of 0.5, as indicated

 by the mentioned applet and conditional frequentist

 developments).

 In contrast, the statistics profession mostly holds

 itself blameless for this state of affairs, observing that

 the statistical literature (and good textbooks) does have

 appropriate warnings. But we are not blameless in

 one sense: we have not made a concerted professional

 effort to provide the scientific world with a unified

 testing methodology (a few noble individual efforts-

 such as Lehmann, 1993-aside) and so we are tacit

 accomplices in the unfortunate situation. With a unified

 testing methodology now available, it is time to mount

 this effort and provide nonstatisticians with testing

 tools that they can effectively use and understand.

 3. CONDITIONAL FREQUENTIST TESTING

 3.1 Introduction to Conditioning

 Conditional inference is one of the most impor-

 tant concepts in statistics, but often it is not taught

 in statistics courses or even graduate programs. In

 part this is because conditioning is automatic in the

 Bayesian paradigm-and hence not a subject of par-

 ticular methodological interest to Bayesians-while, in

 the frequentist paradigm, there is no established gen-

 eral theory as to how to condition. Frequentists do con-

 dition automatically in various circumstances. For in-

 stance, consider a version of the famous Cox (1958)

 example, in which, say, an assay is sometimes run with

 a sample of size n = 10 and other times with a sample

 of size n = 20. If the choice of sample size does not

 depend on the unknowns under consideration in the as-
 say (e.g., if it depends only on whether an employee is

 home sick or not), then virtually everyone would con-
 dition on the sample size, rather than, say, report an
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 COULD FISHER, JEFFREYS AND NEYMAN HAVE AGREED? 5

 error probability that is the average of the error proba-

 bilities one would obtain for the two sample sizes.

 To be precise as to the type of conditioning we will

 discuss, it is useful to begin with a simple example,

 taken from Berger and Wolpert (1988) (which also

 discusses conditioning in general; see also Reid, 1995;
 Bj0rnstad, 1996).

 EXAMPLE 2. Two observations, X1 and X2, are to

 be taken, where

 0 + 1, with probability 1/2,

 I -i , with probability 1/2.

 Consider the confidence set for the unknown 0:

 the point {I (X1 + X2)},

 C(XI9 X2)= if Xj X2,
 the point {XI -1}

 if X1 =X2.

 The (unconditional) frequentist coverage of this confi-

 dence set can easily be shown to be

 PO(C(XI, X2) contains 0) = 0.75.

 This is not at all a sensible report, once the data are

 at hand. To see this, observe that, if xl # X2, then we
 know for sure that their average is equal to 0, so that the

 confidence set is then actually 100% accurate. On the

 other hand, if xl = x2, we do not know if 0 is the data's

 common value plus 1 or their common value minus 1,

 and each of these possibilities is equally likely to have
 occurred.

 To obtain sensible frequentist answers here, one can

 define the conditioning statistic S = IX - X2I, which
 can be thought of as measuring the strength of evidence

 in the data (S = 2 reflecting data with maximal eviden-

 tial content and S = 0 being data of minimal evidential

 content). Then one defines frequentist coverage condi-

 tional on the strength of evidence S. For the example,

 an easy computation shows that this conditional confi-

 dence equals, for the two distinct cases,

 Po (C(XI, X2) contains 0 I S = 2) = 1,

 Po (C(XI, X2) contains 0 I S = 0) = -

 It is important to realize that conditional frequentist

 measures are fully frequentist and (to most people)

 clearly better than unconditional frequentist measures.

 They have the same unconditional property (e.g., in the

 above example one will report 100% confidence half
 the time and 50% confidence half the time, resulting

 in an "average" of 75% confidence, as must be the

 case for a frequentist measure), yet give much better

 indications of the accuracy for the type of data that one

 has actually encountered.

 Exactly the same idea applies to testing. In the

 case of testing simple hypotheses Ho: 0 = So versus
 H1: 0 = 01, one determines a statistic S(x), the
 magnitude of which indicates the strength of evidence

 in x. Then one computes conditional frequentist error

 probabilities of Type I and Type II, respectively, as

 a(s) = Po(reject HoIS(x) = s) and

 (2)
 ,t(s) = PI(acceptHolS(x) =s).

 A notational comment: a variety of other names are

 often given to conditioning quantities in the literature.

 Fisher often used the term "relevant subsets" to refer

 to subsets of the sample space upon which one should

 condition. In Example 2, these would be {(X1, X2):

 X1 = X2} and {(x1, X2): X1 # X2}. Another common
 term (as in Lehmann, 1993) is "frame of reference,"

 referring to the sample space (or subset thereof) that is

 actually to be used for the frequentist computation.

 3.2 Brief History of Conditional

 Frequentist Testing

 Fisher often used conditioning arguments in testing,

 as in the development of the Fisher exact test, wherein

 he chose S to be the marginal totals in a contingency

 table and then computed p-values conditional on

 these marginal totals. In addition, Fisher recommended

 that statisticians routinely condition on an ancillary

 statistic S (a statistic that has a distribution that does

 not depend on 0), when available. Fisher's arguments

 for conditioning were a mix of theory and pragmatism

 (cf. Savage, 1976; Basu, 1975, 1977), and led to a wide
 variety of conditioning arguments being developed in

 the likelihood school of statistics (see, e.g., Cox, 1958;

 Kalbfleish and Sprott, 1973; Reid, 1995).

 The use of conditioning in the pure frequentist

 school was comparatively sporadic, perhaps because

 Neyman rarely addressed the issue (in spite of frequent

 criticism by Fisher concerning the supposed lack
 of conditioning in the frequentist school). The first

 extensive discussions of conditional frequentist testing
 were in Kiefer (1976,1977) and Brown (1978). Among

 the many observations they made was that, from a

 frequentist perspective, any conditioning statistic-

 not just an ancillary statistic-could be employed.

 However, usual frequentist criteria did not seem to be
 useful in suggesting the conditioning statistic to use, so
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 6 J. 0. BERGER

 the theory did not immediately lead to the development

 of statistical methodology. As late as 1993, Lehmann

 (1993) asserted, "This leaves the combined theory

 [of testing] with its most difficult issue: What is the

 relevant frame of reference?"

 Berger, Brown and Wolpert (1994) approached the

 issue of choice of the conditioning statistic from the

 perspective of seeking a unification between condi-

 tional frequentist testing and Bayesian testing, and it is

 a version of the test proposed therein (as reformulated

 in Wolpert, 1996) that we will be discussing. That this

 test also provides a potential unification with Fisherian

 testing was only recently realized, however.

 3.3 Recommended Conditioning Statistic and Test

 Fisher argued that p-values are good measures

 of the strength of evidence against a hypothesis.

 A natural thought is thus to use p-values to define

 the conditioning statistic for testing. Thus, for i = 0, 1,

 let pi be the p-value in testing Hi against the other
 hypothesis and define the conditioning statistic

 (3) S=max{po,pi}.

 The use of this conditioning statistic is equivalent to

 deciding that data (in either the rejection or acceptance

 region) that have the same p-value have the same

 strength of evidence. Note that p-values are only

 being used in an ordinal sense; any strictly monotonic

 function of p, applied to both hypotheses, would lead

 to the same conditioning statistic.

 The natural corresponding conditional test proceeds

 by:

 * Rejecting Ho when po < pI, and accepting other-
 wise.

 * Computing the Type I and Type II conditional error

 probabilities (CEPs) as in (2).

 Using the results in Berger, Brown and Wolpert (1994),

 this can be shown to result in the test TC, defined by

 if po < P1,

 reject Ho and report Type I CEP

 (4) TC= i f B(pr)
 if Po > PI ,

 accept Ho and report Type II CEP

 X I + B(x)r

 where B(x) is the likelihood ratio (or Bayes factor).

 EXAMPLE 3 (Taken from Sellke, Bayarri and Berger,

 2001). It is desired to test

 Ho: X - Uniform(0, 1) versus H1: X - Beta(1/2, 1).

 The Bayes factor (or likelihood ratio) is then B(x) =

 1/(2,x)-l = 2a/x. Computation yields po = Po
 (X < x) = x and P1 = P1(X > x) = 1 - fxY. Thus

 the conditioning statistic is S = max{po, P1 } = max{x,
 1 - ~'W1 (so it is declared that, say, x = 4 in the ac-

 ceptance region has the same strength of evidence as

 x = 1 in the rejection region, since they would lead to

 the same p-value in tests of Ho and HI, respectively).
 The recommended conditional frequentist test is thus

 if x < 0.382,

 reject Ho and report Type I CEP

 a(x) = (1 + IX-1/2)-1

 if x > 0.382,

 accept Ho and report Type II CEP

 1(x) = (1 + 2x1/2)-.
 Note that the CEPs both vary with the strength of

 evidence in the data, as was one of the basic goals.

 4. THE POTENTIAL AGREEMENT

 We consider Neyman, Fisher and Jeffreys in turn,

 and discuss why TC might-and might not-have

 appealed to them as a unifying test.

 4.1 Neyman

 The potential appeal of the test to Neyman is

 straightforward: it is fully compatible with the frequen-

 tist principle and hence is allowed within the frequen-

 tist paradigm. Neyman rarely discussed conditioning,

 in spite of considerable criticisms from Fisher in this

 regard, as noted above, and so it is difficult to specu-
 late as to his reaction to use of the conditioning sta-

 tistic in (3). The result-having a true frequentist test
 with error probabilities fully varying with the data-

 would have certainly had some appeal, if for no other

 reason than that it eliminates the major criticism of the
 Neyman-Pearson frequentist approach. Also, Neyman
 did use conditioning as a technical tool, for instance, in

 developments relating to similar tests (see, e.g., Ney-
 man and Pearson, 1933), but in these developments the

 conditional Type I error always equalled the uncondi-
 tional Type I error, so the fundamental issues involving
 conditioning were not at issue.

 Neyman might well have been critical of condition-
 ing that affected optimality properties, such as power.
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 COULD FISHER, JEFFREYS AND NEYMAN HAVE AGREED? 7

 This can occur if conditioning is used to alter the deci-

 sion rule. The classic example of Cox (1958) is a good

 vehicle for discussing this possibility.

 EXAMPLE 4. Suppose X is normally distributed

 as X (0, 1) or K (0,4), depending on whether the

 outcome, Y, of flipping a fair coin is heads (y = 1)

 or tails (y = 0). It is desired to test Ho: 0 = -1
 versus H1: 0 = 1. The most powerful (unconditional)

 level a = 0.05 test can then be seen to be the test

 with rejection region given by x > 0.598 if y = 1 and

 x >2.392ify=0.
 Instead, it seems natural to condition upon the

 outcome of the coin flip in the construction of the tests.

 Given y = 1, the resulting most powerful a = 0.05

 level test would reject if x > 0.645, while, given y = 0,

 the rejection region would be x > 2.290. This is still a

 valid frequentist test, but it is no longer unconditionally

 optimal in terms of power and Neyman might well have

 disapproved of the test for this reason. Lehmann (1993)
 provided an excellent discussion of the tradeoffs here.

 Note, however, that the concern over power arises,

 not because of conditioning per se, but rather because

 the decision rule (rejection region) is allowed to change

 with the conditioning. One could, instead, keep the
 most powerful unconditional rejection region (so that
 the power remains unchanged), but report error prob-
 abilities conditional on Y. The resulting Type I error

 probabilities, conditional on y = 1 and y = 0, would
 be a(1) = 0.055 and a(0) = 0.045, respectively. The
 situation is then exactly the same as in Example 2, and
 there is no justification for reporting the unconditional
 a = 0.05 in lieu of the more informative a((1) = 0.055
 or a((0) = 0.045. (One can, of course, also report the
 unconditional a = 0.05, since it reflects the chosen de-
 sign for the experiment, and some people might be in-
 terested in the design, but it should be clearly stated
 that the conditional error probability is the operational
 error probability, once the data are at hand.)

 We are not arguing that the unconditional most
 powerful rejection region is better; indeed, we agree
 with Lehmann's (1993) conclusion that conditioning
 should usually take precedence over power when

 making decisions. However, we are focusing here
 only on the inferential report of conditional error
 probabilities, in which case concerns over power do not
 arise.

 Of course, we actually advocate conditioning in this
 article on (3) and not just on y. Furthermore, as we are

 following Fisher in defining the strength of evidence
 in the data based on p-values, we must define S

 separately for y = 1 and y = 0, so that we do condition

 on Y as well as S. The resulting conditional frequentist
 test is still defined by (4) and is easily seen to be

 if x >0,

 reject Ho and report Type I CEP

 TC= a(x, y) = (1 + exp{2(2Y-I)x}<)

 if x <0,

 accept Ho and report Type II CEP

 f(x, y) = (1 + exp{-2(2Y-)x}I)-.

 Note that the answers using this fully conditional
 frequentist test can be quite different from the answers
 obtained by conditioning on Y alone. For instance,
 at the boundary of the unconditional most powerful
 rejection region (x = 0.598 if y = 1 and x = 2.392
 if y = 0), the CEPs are a(0.598, 1) = a(2.392, 0) =

 0.232. At, say, x = 4.0, the CEPs are a(4.0, 1) =
 0.00034 and a (4.0, 0) = 0.1 19, respectively. Clearly
 these results convey a dramatically different message
 than the error probabilities conditioned only on Y (or
 the completely unconditional a = 0.05).

 Another feature of Tc that Neyman might have
 taken issue with is the specification of the rejection
 region in (4). We delay discussion of this issue until
 Section 5. 1.

 4.2 Fisher

 Several aspects of Tc would likely have appealed to
 Fisher. First, the test is utilizing p-values to measure

 strength of evidence in data, as he recommended, and
 conditioning upon strength of evidence is employed.
 The resulting test yields error probabilities that fully
 vary with the strength of evidence in the data, a
 property that he felt was essential (and which caused
 him to reject Neyman-Pearson testing). In a sense,

 one can think of Tc as converting p-values into error
 probabilities, while retaining the best features of both.

 One could imagine that Fisher would have ques-
 tioned the use of (3) as a conditioning statistic, since
 it will typically not be ancillary, but Fisher was quite
 pragmatic about conditioning and would use nonan-
 cillary conditioning whenever it was convenient (e.g.,
 to eliminate nuisance parameters, as in the Fisher ex-

 act test, or in fiducial arguments: see Basu, 1977, for
 discussion). The use of max rather than the more nat-
 ural min in (3) might have been a source of concern
 to Fisher; we delay discussion of this issue until Sec-
 tion 5.2.

 Fisher would have clearly disliked the fact that
 an alternative hypothesis is necessary to define the
 test TC. We return to this issue in Section 5.3.
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 8 J. 0. BERGER

 4.3 Jeffreys

 The most crucial fact about the CEPs in (4) is

 that they precisely equal the objective Bayesian error

 probabilities, as defined in (1). Thus the conditional

 frequentist and objective Bayesian end up reporting

 the same error probabilities, although they would

 imbue them with different meanings. Hence we have

 agreement as to the reported numbers, which was the

 original goal. Jeffreys might have slightly disagreed

 with the rejection region specified in (4); we again

 delay discussion until Section 5.1.

 Some statisticians (the author among them) feel

 that a statistical procedure is only on strong grounds

 when it can be justified and interpreted from at least

 the frequentist and Bayesian perspectives. That Tc
 achieves this unification is a powerful argument in its

 favor.

 4.4 Other Attractions of Tc

 The new conditional frequentist test has additional

 properties that might well have appealed to Fisher,

 Jeffreys and Neyman. A few of these are listed here.

 4.4.1 Pedagogical attractions. Conditional frequen-

 tist testing might appear difficult, because of the need

 to introduce the conditioning statistic S. Note, how-

 ever, that the test Tc is presented from a fully oper-
 ational viewpoint in (4), and there is no mention what-

 soever of the conditioning statistic. In other words, the

 test can be presented methodologically without ever re-

 ferring to S; the conditioning statistic simply becomes

 part of the background theory that is often suppressed.

 Another item of pedagogical interest is that teaching

 statistics suddenly becomes easier, for three reasons.

 First, it is considerably less important to disabuse stu-

 dents of the notion that a frequentist error probability
 is the probability that the hypothesis is true, given the

 data, since a CEP actually has that interpretation. Like-

 wise, one need not worry to such an extent about clar-

 ifying the difference between p-values and frequentist

 error probabilities. Finally, in teaching testing, there is
 only one test-that given in (4). Moving from one sta-

 tistical scenario to another requires only changing the

 expression for B(x) (and this is even true when testing

 composite hypotheses).

 4.4.2 Simplifications that ensue. The recommended
 conditional frequentist test results in very significant

 simplifications in testing methodology. One of the

 most significant, as discussed in Berger, Boukai and

 Wang (1997, 1999), is that the CEPs do not depend

 on the stopping rule in sequential analysis so that

 (i) their computation is much easier (the same as

 fixed sample size computations) and (ii) there is no

 need to "spend a" to look at the data. This last point

 removes the perceived major conflict between ethical

 considerations and discriminatory power in clinical

 trials; one sacrifices nothing in discriminatory power

 by evaluating (and acting upon) the evidence after each

 observation has been obtained.

 A second simplification is that the error probabili-

 ties are computable in small sample situations, without

 requiring simulation over the sample space or asymp-

 totic analysis. One only needs to be able to compute

 B(x) in (4). An example of this will be seen later, in a

 situation involving composite hypotheses.

 5. EXTENSIONS

 5.1 Alternative Rejection Regions

 A feature of Tc that is, at first, disconcerting is
 that the rejection region need not be specified in ad-

 vance; it is predetermined as {x: po(x) < pl(x)}.
 This is, in fact, the minimax rejection region, that

 is, that which has unconditional error probabilities

 (x = P. The disconcerting aspect is that, classically,
 one is used to controlling the Type I error probabil-

 ity through choice of the rejection region, and here

 there seems to be no control. Note, however, that

 the unconditional a and P3 are not used as the re-
 ported error probabilities; the conditional a(x) and

 P3(x) in (4) are used instead. In Example 3, for in-
 stance, when x = 0.25, one rejects and reports Type I

 CEP ac(0.25) = (1 + ' (0.25)-1/2) -1 0.5. While Ho
 has formally been rejected, the fact that the reported

 conditional error probability is so high conveys the

 clear message that this is a very uncertain conclusion.

 For those uncomfortable with this mode of oper-

 ation, note that it is possible to, instead, specify an

 ordinary rejection region (say, at the unconditional
 a = 0.05 level), find the "matching" acceptance region

 (which would essentially be the 0.05 level rejection re-

 gion if H1 were the null hypothesis), and name the re-

 gion in the middle the no-decision region. The condi-

 tional test would be the same as before, except that one
 would now state "no decision" when the data are in the

 middle region. The CEPs would not be affected by this

 change, so that it is primarily a matter of preferred style
 of presentation (whether to give a decision with a high

 CEP or simply state no decision in that case).

 A final comment here relates to a minor dissatisfac-

 tion that an objective Bayesian might have with TC.

This content downloaded from 
������������152.3.43.50 on Tue, 12 Sep 2023 16:01:20 +00:00������������� 

All use subject to https://about.jstor.org/terms



 COULD FISHER, JEFFREYS AND NEYMAN HAVE AGREED? 9

 An objective Bayesian would typically use, as the

 rejection region, the set of potential data for which

 P(Ho lx) < 1/2, rather than the region given in (4).

 In Berger, Brown and Wolpert (1994), this concern

 was accommodated by introducing a no-decision re-

 gion consisting of the potential data that would lead to

 this conflict. Again, however, this is of little importance

 statistically (the data in the resulting no-decision region

 would be very inconclusive in any case), so simplicity

 argues for sticking with TC.

 5.2 Other Types of Conditioning

 One could consider a wide variety of conditioning

 statistics other than that defined in (3). Sellke, Bayarri

 and Berger (2001) explored, in the context of Exam-

 ple 3, other conditioning statistics that have been sug-

 gested. A brief summary of the results they found fol-

 lows.

 Ancillary conditioning statistics rarely exist in test-

 ing and, when they exist, can result in unnatural condi-

 tional error probabilities. For instance, in Example 3, if

 one conditions on the ancillary statistic (which happens

 to exist in this example), the result is that /3(x) 1/2

 as the likelihood ratio, B(x), varies from 1 to 2. This

 violates the desire for error probabilities that vary with

 the strength of evidence in the data.

 Bimbaum (1961) suggested "intrinsic significance,"

 based on a type of conditioning defined through like-

 lihood concepts. Unfortunately, he found that it rarely

 works. Indeed, in Example 3, use of the corresponding

 conditioning statistic yields a((x)_ 1 as B(x) varies

 between 0 and 1/2.

 Kiefer (1977) suggested "equal probability contin-

 uum" conditioning, which yields the unnatural result,

 in Example 3, that /3(x) -* 0 as B(x) -- 2; to most sta-
 tisticians, a likelihood ratio of 2 would not seem equiv-

 alent to an error probability of 0.
 In classical testing using p-values, the focus is usu-

 ally on small p-values. It thus might seem more nat-

 ural to condition on S = min{po, Pl rather than S =
 max{po, P1 } when defining the conditional frequentist
 test. The motivation would be that instead of equating

 evidence in favor of the two hypotheses, one would

 equate evidence against them. In Example 3, how-

 ever, this yields answers that are clearly unsatisfactory.
 For instance, the resulting conditional error probabil-

 ities are such that a(x) -- 1/3 as B(x) -- 0, while
 ,B(x) -O 0 as B(x) -- 2, neither of which is at all sen-
 sible.

 Of course, one example is hardly compelling evi-
 dence, but the example does show that conditioning

 statistics can easily lead to error probabilities that are

 counterintuitive. This is perhaps another reason that

 conditional frequentist testing has not been common

 in the statistical community, in spite of its consid-

 erable potential advantages. A chief attraction of the

 conditioning statistic in (3) is that it yields CEPs that

 can never be counterintuitive, since the resulting error

 probabilities must coincide with objective Bayesian er-

 ror probabilities.

 5.3 Calibrating p-Values When There Is No

 Alternative Hypothesis

 Fisher often argued that it is important to be able to

 test a null hypothesis, even if no alternative hypothesis

 has been determined. The wisdom in doing so has been

 extensively debated: many statisticians have strong

 opinions pro and con. Rather than engaging this debate

 here, we stick to methodology and simply discuss how

 conditional frequentist testing can be done when there

 is no specified alternative.

 The obvious solution to the lack of a specified alter-

 native is to create a generic nonparametric alternative.
 We first illustrate this with the example of testing of fit

 to normality.

 EXAMPLE 5. Berger and Guglielmi (2001) con-

 sidered testing Ho: X - K(p,ua) versus H1: X-
 F(g, a), where F is an unknown location-scale dis-
 tribution that will be centered at the normal distrib-

 ution. As mentioned above, the key to developing a

 conditional frequentist test is first to develop an objec-

 tive Bayes factor, B(x). This was done by choosing a

 Polya tree prior for F, centered at the A(gt, a) distri-
 bution, and choosing the right-Haar prior, 7r(,i, a) =

 1/a, for the location-scale parameters in each model.

 Berger and Guglielmi (2001) showed how to com-

 pute B(x).

 The recommended conditional frequentist test is

 then given automatically by (4). Because the null

 hypothesis has a suitable group invariance structure,

 the analysis in Dass and Berger (2003) can be used to
 show that the conditional Type I error is indeed a(x)

 in (4), while , (x) is an average Type II error (see

 Section 5.4). It is interesting to note that this is an exact

 frequentist test, even for small sample sizes. This is in
 contrast to unconditional frequentist tests of fit, which
 typically require extensive simulation or asymptotic
 arguments for the determination of error probabilities.

 Developing specific nonparametric alternatives for
 important null hypotheses, as above, can be arduous,
 and it is appealing to seek a generic version that
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 10 J. 0. BERGER

 TABLE 1

 Calibration of p-values as lower bounds on

 conditional error probabilities

 p 0.2 0.1 0.05 0.01 0.005 0.001

 (X(p) 0.465 0.385 0.289 0.111 0.067 0.0184

 applies widely. To do so, it is useful to again follow

 Fisher and begin with a p-value for testing Ho. If
 it is a proper p-value, then it has the well-known

 property of being uniformly distributed under the null

 hypothesis. (See Bayarri and Berger, 2000, Robins, van

 der Vaart and Ventura, 2000, and the references therein

 for discussion and generalizations.) In other words, we

 can reduce the original hypothesis to the generic null

 hypothesis that Ho: p(X) - Uniform(0, 1).
 For this p-value null, Sellke, Bayarri and Berger

 (2001) developed a variety of plausible nonparametric
 alternatives and showed that they yield a lower bound

 on the Bayes factor of B(p) > -e p log(p). Although

 each such alternative would result in a different test (4),

 it is clear that all such tests have

 (5) a(p) > (1 + [-eplog(p)]-')-

 This is thus a lower bound on the conditional Type I

 error (or on the objective posterior probability of Ho)
 and can be used as a "quick and dirty" calibration of a

 p-value when only Ho is available.
 Table 1, from Sellke, Bayarri and Berger (2001),

 presents various p-values and their associated calibra-

 tions. Thus p = 0.05 corresponds to a frequentist error

 probability of at least x (0.05) = 0.289 in rejecting Ho.
 While simple and revealing, the calibration in (5) is

 often a too-small lower bound on the conditional Type I

 error. Alternative calibrations have been suggested in,

 for example, Good (1958, 1992).

 5.4 Other Testing Scenarios

 For pedagogical reasons, we have only discussed

 tests of simple hypotheses here, but a wide variety of

 generalizations exist. Berger, Boukai and Wang (1997,
 1999) considered tests of simple versus composite

 hypotheses, including testing in sequential settings. For

 composite alternatives, conditional Type II error is now

 (typically) a function of the unknown parameter (as
 is the unconditional Type II error or power function)

 so that it cannot directly equal the corresponding
 Bayesian error probability. Interestingly, however, a

 posterior average of the conditional Type II error
 function does equal the corresponding Bayesian error
 probability, so that one has the option of reporting the

 average Type II error or the average power instead

 of the entire function. This goes a long way toward

 answering Fisher's criticisms concerning the difficulty

 of dealing with power functions.

 Dass (2001) considered testing in discrete settings

 and was able to construct the conditional frequentist

 tests in such a way that very little randomization is nec-

 essary (considerably less than for unconditional tests

 in discrete settings). Dass and Berger (2003) consid-

 ered composite null hypotheses that satisfy an appro-

 priate invariance structure and showed that essentially

 the same theory applies. This covers a huge variety of

 classical testing scenarios. Paulo (2002a, b) considered

 several problems that arise in sequential experimenta-

 tion, including comparison of exponential populations

 and detecting the drift of a Brownian motion.

 The program of developing conditional frequentist

 tests for the myriad of testing scenarios that are

 considered in practice today will involve collaboration

 of frequentists and objective Bayesians. This is because

 the most direct route to determination of a suitable

 conditional frequentist test, in a given scenario, is the

 Bayesian route, thus first requiring determination of a

 suitable objective Bayesian procedure for the scenario.
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 Comment
 Ronald Christensen

 I feel privileged to congratulate Jim Berger on his

 exemplary career leading to the Fisher lectureship,

 as well as this interesting work with his colleagues.

 I totally agree with the premise that there is vast

 confusion about the practical use of testing and I hope

 that this article puts one more nail into the coffin that

 Neyman-Pearson testing so richly deserves. However,

 in my view, except for the incorporation of p-values,

 this article has little to do with Fisherian testing.

 Ultimately, the key issue is to get the philosophical

 ideas down and to use methods that are appropriate to

 the problems being addressed.

 In retrospect I believe that Neyman and Pearson per-

 formed a disservice by making traditional testing into a

 parametric decision problem. Frequentist testing is ill-

 suited for deciding between alternative parameter val-

 ues. I think Berger and Wolpert (1984) ably demon-

 strated that in their wonderful book. For example, when
 deciding between two hypotheses, why would you re-

 ject a hypothesis that is 10 times more likely than the

 alternative just to obtain some preordained ae level? It

 is a crazy thing to do unless you have prior knowl-

 edge that the probability of the alternative occurring

 Ronald Christensen is Professor, Department of

 Mathematics and Statistics, University of New

 Mexico, Albuquerque, New Mexico 87131 (e-mail:

 fletcher@ stat. unm. edu).

 is at least nearly 10 times larger. As to picking priors

 for scientific purposes, if you do not have enough data

 so that any "reasonable" prior gives the same answers

 in practice, you obviously cannot construct a scientific

 consensus and should admit that your results are your

 opinions.

 Outside of Neyman-Pearson theory, testing is prop-

 erly viewed as model validation. Either the model

 works reasonably or it does not. There is no paramet-

 ric alternative hypothesis! To perform either Neyman-

 Pearson or Bayesian testing, you must have, or con-

 struct, a parametric alternative. If you are willing

 to construct an alternative, you should use one of

 those theories. (Nonparametric problems are properly

 thought of as having huge parameter sets.) But at some

 point we all have to stop dreaming up alternatives

 and either go on to other problems, retire or die. In

 model validation, there is a series of assumptions that

 constitutes the model. Data are obtained and a one-

 dimensional test statistic is chosen. Either the data, as

 summarized by the test statistic, appear to be consis-

 tent with the model or they do not. If they appear to

 be inconsistent, obviously it suggests something may

 be wrong with the model. (Proof by contradiction.) If

 they appear to be consistent, big deal! (No contradic-

 tion, no proof.) The model came from somewhere; one

 hopes from scientific experience. But we eventually

 show that all models are wrong. The important ques-
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