
P Values for Composite Null Models 

Author(s): M. J. Bayarri and James O. Berger 

Source: Journal of the American Statistical Association , Dec., 2000, Vol. 95, No. 452 
(Dec., 2000), pp. 1127-1142  

Published by: Taylor & Francis, Ltd. on behalf of the American Statistical Association 

Stable URL: https://www.jstor.org/stable/2669749

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

Taylor & Francis, Ltd.  and American Statistical Association  are collaborating with JSTOR to 
digitize, preserve and extend access to Journal of the American Statistical Association

This content downloaded from 
�����������71.65.170.191 on Mon, 11 Sep 2023 00:59:12 +00:00������������ 

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/2669749


 P Values for Composite Null Models

 M. J. BAYARRI and James 0. BERGER

 The problem of investigating compatibility of an assumed model with the data is investigated in the situation when the assumed

 model has unknown parameters. The most frequently used measures of compatibility are p values, based on statistics T for which

 large values are deemed to indicate incompatibility of the data and the model. When the null model has unknown parameters, p

 values are not uniquely defined. The proposals for computing a p value in such a situation include the plug-in and similar p values

 on the frequentist side, and the predictive and posterior predictive p values on the Bayesian side. We propose two alternatives, the
 conditional predictive p value and the partial posterior predictive p value, and indicate their advantages from both Bayesian and
 frequentist perspectives.

 KEY WORDS: Bayes factors; Bayesian p values; Conditioning; Model checking; Predictive distributions.

 1. INTRODUCTION

 1.1 Background

 In parametric statistical analysis of data X, one is fre-

 quently working at a given moment with an entertained

 model or hypothesis Ho: X f (x; 0). We will call this the
 null model or null hypothesis, even though no alternative

 is explicitly formulated. We assume that f(x; 0) is either

 a discrete density or a continuous density (with respect to
 Lebesgue measure). A statistic T = t(X) is chosen to in-
 vestigate compatibility of the model with the observed data,
 Xobs. We assume that T has been expressed in such a way
 that large values of T indicate less compatibility with the

 model. The most commonly used measure of compatibility
 is the p value, defined as

 p= Pr(t(X) > t(Xobs)). (1)

 When 0 is known, the probability computation in (1) is with
 respect to f (x; 0). The focus in this article is on the choice
 of the probability distribution used to compute (1) when
 0 is unknown. In Section 2 we present two new types of
 p values, which we argue are superior to existing choices.
 The rest of this section describes the most common of the

 existing choices. We abuse notation by using f(t; 0) and

 f(t Iu; 0) to denote the marginal density of t(X) and the
 conditional density of t(X) given u(X) = u.

 The most obvious way to deal with an unknown 0 in

 computation of the p value is to replace 0 in (1) by some
 estimate, 0. In this article we consider only the usual choice

 for 0, namely the maximum likelihood estimator (MLE). We

 call the resulting p value the plug-in p value (pplug). Using
 a superscript to denote the density with respect to which
 the p value in (1) is computed, the plug-in p value is thus
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 defined as

 Pplug Prf(0;?) (t(X) > t(X,b,)). (2)

 The main strengths of Pplug are its simplicity and intuitive

 appeal. Its main weakness appears to be a failure to account

 for uncertainty in the estimation of 0, although as we show,

 this issue is rather involved.

 Another natural device for eliminating the unknown 0

 is to condition on a sufficient statistic, U, for 0. Then

 f (xI Uobs; 0) does not depend on 0, and computations in (1)
 can be carried out using the completely specified f (xI UOb,).
 [In fact, U need only be sufficient for 0 with respect to

 f(t; 0).] We call these p values similar p values, a term
 borrowed from the related notion of similar tests and con-

 fidence regions. A similar p value is thus defined as

 Psim = Prf(I Uobs)(t(X) > t(x.bs)). (3)

 The main strength of psim is that it is based on a proper
 probability computation, which imbues the end result with

 various desirable properties (discussed later). Its main

 weaknesses are that the computation can be burdensome

 and that a suitable sufficient U typically does not exist.

 Bayesians have a natural way to eliminate nuisance pa-

 rameters: integrate them out. Thus if 7r(0) is a prior distribu-
 tion for 0, then the marginal or (prior) predictive distribution
 is

 m(x) f (x; 0)Tr(0) dO. (4)

 Because this is free of 0, it can be used to compute a p

 value, leading to the prior predictive p value, given by

 Pprior = Pr'(. )(t(X) >_ t(Xobs))- (S)

 The main strengths of Pprior are that it is also based on a

 proper probability computation (at least if 7r(0) is proper),
 and that it suggests a natural and simple T, namely t(x) =
 1/m(x). The main weakness of Pprior for pure model check-

 ing is its dependence on the prior 7r(0); in essence, m(x)
 measures the likelihood of x relative to both the model and
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 the prior, and an excellent model could come under suspi-

 cion if a poor prior distribution were used. For this reason,

 and because model checking is often considered at early

 stages of an analysis before careful prior elicitation is per-

 formed (and/or because a nonsubjective analysis might be
 desired from the beginning), it is attractive to attempt to

 use noninformative priors. Unfortunately, noninformative
 priors are typically improper, in which case the prior predic-

 tive m(x) would also be improper, precluding computation

 of (5). Box (1980) popularized the use of Pprior
 The concerns mentioned in the preceding paragraph have

 led many Bayesians, beginning with Guttman (1967) and
 Rubin (1984), to eliminate 0 from f(x; 0) by integrating

 with respect to the posterior distribution, 7r(O 0Xob), instead
 of the prior, before computing a p value. The posterior pre-

 dictive p value is thus defined as

 Ppost PrmPost( IXobs)(t(X) > t(xobs)), (6)

 where

 mp0st(XIXobs) J f(X; 0)r(O IXobs) dO. (7)

 The main strengths of Ppost are as follows:

 a. Improper noninformative priors can readily be used

 (since 7r(OxobS) will typically be proper).

 b. mpost (xIxobs) typically will be much more heavily in-
 fluenced by the model than by the prior; indeed, as the
 sample size goes to infinity, the posterior distribution

 will essentially concentrate at 0, so that Ppost will (for

 large n) be very close to pplug.

 c. It typically is very easy to compute using output

 from modern Markov chain Monte Carlo (MCMC)
 Bayesian analyses.

 Its main weakness is that there is an apparent "double

 use" of the data in (6), first to convert the (possibly im-

 proper) prior 7r(O) into a proper distribution 7r(O0Xobs) for
 determining the reference distribution npost(xxobs), and
 then to compute the tail area corresponding to t(xobs). This
 double use of the data can induce unnatural behavior. From

 a Bayesian perspective, defenders of the prior predictive
 also point out that the posterior predictive lacks a pure
 Bayesian interpretation; although this was our original mo-
 tivation for the developments herein, the arguments in the

 article are not directly based on such reasoning.
 Generalizations of (6) were considered by Meng (1994),

 Gelman, Carlin, Stern, and Rubin (1995), Gelman, Meng,
 and Stern (1996), and references therein; in particular, t(X)
 could be replaced by a function t(X, 0), and f (x; 0) in (7)
 could be replaced by f(x 0, A), where A is some other
 statistic. We do not discuss such generalizations in this ar-
 ticle.

 There are also many other related works. Aitkin (1991)
 used the posterior distribution to compute actual Bayes fac-

 tors, instead of p values. Evans (1997) introduced a related

 concept for model checking based on the ratio of the pos-

 terior and prior predictive densities.

 Other approaches that have been suggested for dealing

 with the nuisance parameter, 0, in computing (1) include

 those of Tsui and Weerahandi (1989) (primarily for one-

 sided testing) and Berger and Boos (1994). The latter au-

 thors sought to provide a practical implementation of the

 conservative frequentist approach that deals with unknown

 0 by maximization:

 Psup = sup Prf ;?)(t(X) > t(X,b5)).
 0

 This p value is of rather limited usefulness, because the

 supremum is often too large to provide useful criticism of

 the model. For instance, in the examples of Sections 2 and

 3, Psup can easily be seen to equal 1. Berger and Boos (1994)
 overcame this difficulty by restricting the supremum to 0 in

 a confidence set for 0 (with the noncoverage probability be-
 ing added to the p value). Although potentially useful to fre-
 quentists in formal testing situations, in which conservatism
 is typically deemed desirable, the approach is less appropri-

 ate for model checking in which conservatism would mean
 that one is often not alerted to the fact that the model is

 inadequate.

 1.2 Evaluation of p Values

 What do we want in a p value? For a frequentist, one
 appealing property would be for p, considered as a ran-

 dom variable, to be uniform[0, 1] under the null, f(x; 0),
 for all 0. In some sense, being U[O, 1] defines a proper p
 value, allowing for its common interpretation across prob-

 lems. Statistical measures that lack a common interpreta-

 tion across problems are simply not very useful. (For more
 extensive discussion of this point, see the companion ar-

 ticle Robins, van der Vaart, and Ventura 2000, which we
 henceforth denote by RVV 2000; earlier articles that refer
 to and/or discuss this "defining" property of a p value in-
 clude De la Horra and Rodriguez-Bernal 1997, Meng 1994,
 Robins 1999, Rubin 1996, and Thompson 1997.)

 For most problems, exact uniformity under the null for

 all 0 cannot be attained for any p value. Thus one must
 weaken the requirement to some extent. A natural weaker
 requirement is that a p value be U[O, 1] under the null in an
 asymptotic sense; this is the subject of RVV (2000). Here
 we focus on studying the degree to which the various p
 values deviate from uniformity in finite-sample scenarios.

 It is not obvious that Bayesians should be concerned with

 establishing that a p value is uniform under the null for all

 0. For instance, the prior predictive p value is U[O, 1] under
 m(x) (if the prior is proper), which means that it is U[O, 1]
 in an average sense over 0. If the prior distribution is chosen

 subjectively, then a Bayesian could well argue that this is
 sufficient; indeed, Meng (1994) suggested that uniformity
 under m(x) is a useful criterion for the evaluation of any
 proposed p value. (The more basic issue that a p value is a
 tail area, and not compatible with true Bayesian measures,
 is discussed briefly in the next section.)

 As mentioned earlier, however, preliminary model check-

 ing is most typically done (by Bayesians) with noninforma-

 tive priors, and if these are improper, there is no "average

 over 0" that can be used. (We later give an example with
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 Bayarri and Berger: P Values for Composite Null Models 1129

 a proper noninformative prior, in which a Bayesian-or

 non-Bayesian-might settle for "average" uniformity.) Of

 course, if a p value is uniform under the null in the frequen-

 tist sense, then it has the strong Bayesian property of being

 marginally U[O, 1] under any proper prior distribution. This

 explains why Bayesians should, at least, be highly satisfied

 if the frequentist requirement obtains. Perhaps more to the

 point, if a proposed p value is always either conservative

 or anticonservative in a frequentist sense (see RVV 2000

 for definitions), then it is likewise guaranteed to be conser-

 vative or anticonservative in a Bayesian sense, no matter

 what the prior. A similar conclusion would hold for large

 sample sizes (under mild conditions) if a proposed p value

 were always conservative or anticonservative in a frequen-

 tist asymptotic sense. (Interesting related discussions con-

 cerning the posterior predictive p value have been given by

 Gelman et al. 1996, Meng 1994, and Rubin 1996.)

 Actually, Bayesians might well go further, not only re-

 quiring unconditional uniformity for p values, but also seek-

 ing reasonable conditional performance. In this article we

 limit discussion of this issue to presentation of some ex-

 amples in which it is clear that study of conditional per-

 formance is of value in comparing p values; we do not,

 however, attempt to present general results in this direc-

 tion.

 There is a vast literature on other methods of evaluating

 p values. Much of the literature is concerned with power

 comparisons against alternatives. There is also a significant
 literature concerned with decision-theoretic evaluations of

 p values (e.g., Blyth and Staudte 1995; Hwang, Casella,
 Robert, Wells, and Farrell 1992; Hwang and Pemantle 1997;

 Hwang and Yang 1997; Schaafsma, Tolboom, and Van Der

 Meulen 1989; Thompson 1997). Neither of these evalua-
 tion techniques is within the scope of this article, because

 we are specifically concerned with the situation in which

 no alternative is present (see the next section). From a non-
 Bayesian perspective, however, evaluation of the new p val-

 ues by these criteria might well prove very illuminating; see

 RVV (2000) for interesting results in this direction.

 1.3 To Be and Not To Be

 This article has five sections. In Section 2 we consider

 two new p values introduced by Bayarri and Berger (1999),
 the partial posterior predictive p value (Pppost) and the con-

 ditional predictive p value (Pcpred), and compare them with
 previous p values in specific examples. Some results are

 also given in Section 2 concerning equality of various p
 values; of particular interest is a result (Theorem 2) that

 allows ready computation of Psim, in certain situations. In
 Section 3 we compare the various p values in the normal
 linear model, where exact computation is possible; this sec-

 tion was directly motivated by RVV (2000). In Section 4 we
 discuss the situation of discrete sample spaces, with empha-
 sis on analysis of contingency tables; this has long been a

 highly problematic area, with the discreteness of the sample

 space causing many p values to be very conservative. We

 present conclusions in Section 5.

 A number of relevant issues are not considered in this

 article. First, we do not explicitly discuss the choice of T,

 in part because this is a contentious issue and is not di-

 rectly related to our development; one of the strengths of

 the methodology that we propose is that it can be applied

 to essentially any choice of T. Second, our primary focus

 is on model checking at initial, exploratory stages of the

 statistical analysis, and consideration of a wide variety of

 intuitive T is often useful at that stage. If one has a clearly

 formulated alternative to Ho, then we would not recom-
 mend using any p value to perform the test, and would

 instead use either Bayes factors or conditional frequentist

 tests (Bayarri and Berger 1999; Berger, Boukai, and Wang

 1997; Berger, Brown, and Wolpert 1994; Berger and Delam-

 pady 1987; Berger and Sellke 1987; Delampady and Berger

 1990; Edwards, Lindman, and Savage 1963). The decision

 to even formulate an alternative to Ho, however, is often
 undertaken on the basis of an analysis designed to indicate

 incompatibility of the model with the data, based on intu-

 itive departure statistics T = t(x). If determination of T

 required hard work, then we would suggest spending the

 time instead on actual formulation of the alternative.

 The other major issue that we mostly avoid is discus-

 sion of measures other than p values of data compatibil-

 ity with the model. (For a review of a number of other

 measures that have been proposed, see Bayarri and Berger

 1997.) The primary reason for considering only p values
 is their ubiquitous presence in statistics, together with the

 fact that they do have some desirable properties (such as
 invariance to transformations of X). Balanced against this

 is the near ubiquitous misinterpretation of p values as either

 frequentist error probabilities or (worse) as the probability

 of Ho. Luckily, a rather simple calibration is available that
 allows p values to be given an intuitive interpretation: com-
 pute B(p) = -ep log(p), when p < e-l, and interpret this as

 the odds (or Bayes factor) of Ho to H1, where H1 denotes
 the (unspecified) alternative to Ho. For those who prefer to
 think in terms of a frequentist error probability ae (in reject-

 ing Ho), the calibration is ae(p) = (1 + [-eplog(p)]-1)->.
 As an example, p = .05 translates into odds B(.05) = .41

 (roughly 1-2.5) of Ho to H1, and frequentist error proba-
 bility a(.05) = .29 in rejecting Ho.

 These calibrations were developed and motivated from a

 various perspectives by Sellke, Bayarri, and Berger (1999).
 On the Bayesian side, they arise from robust Bayesian ar-

 guments, as lower bounds on Bayes factors for testing Ho.
 [B(p) arises exactly in testing against a general nonpara-
 metric alternative, and arises approximately in parametric
 analyses.)] On the frequentist side, o0(p) arises as a lower
 bound on the type I error probability, over a large class of
 conditional frequentist tests, where one conditions on the
 "strength of evidence" in the data. It is of interest that the
 calibrations are based in part on starting with a proper p

 value; that is, a p value that is U[0, 1] in some sense.
 Further discussion of some of the philosophical issues

 surrounding the use of p values has been given by Bayarri

 and Berger (1999). From now on, we ignore these issues and

 simply assume that (possibly calibrated) p values are useful,
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 for whatever reasons, and focus on the issue of which p
 values are most satisfactory.

 2. CONDITIONAL PREDICTIVE p VALUES

 Section 2.1 introduces the two new p values that we con-

 sider and illustrates their definitions (and those of the other

 p values) in a standard example; some interesting features of
 the various p values are also observed. Section 2.2 presents
 the motivations for the new p values from both Bayesian

 and frequentist perspectives. Section 2.3 addresses compu-
 tational issues.

 2.1 Methodology

 Consider first the partial posterior predictive p value, de-
 fined for a prior 7r(O) (typically noninformative) as

 Pppost = Prm( Ixobs\tobs) (T > tobs); (8)

 here T = t(X), tobs = t(Xobs), and m(' xobs \ tobs) and the
 (assumed proper) partial posterior 7r(' xobs \ tobs) are given
 by

 m(tlXobs \ tobs) f J t f(L0)rr(O Xobs \ tobs) dO

 and

 f (Xobs; 0)7r(O (9
 r(O IXobs \ tobs) OC f(xobs Itobs; 0)7r(0) DC f0 0) (9)

 Intuitively, this avoids the double use of the data that occurs

 in the posterior predictive p value, because the contribution

 of tobs to the posterior is "removed" before 0 is eliminated
 by integration. (The notation xobs \ tobs was chosen to in-
 dicate this.)

 The second p value that we propose is a specific case

 of what can be termed a U-conditional predictive p value,
 defined, for some conditioning statistic U = u(X), as

 Pcpre(u) = Prm(Iuobs)(T > tobs); (10)

 here Uobs = u(xobs) and (formally)

 m(tLu) J f (tlu; 0)7r(Olu) dO, (11)

 assuming that

 rr(Oa) ffz- OwO)O(12) 1(|)=f f (v,; 0)7r(0 dS 12

 is proper. [Recall that f(tLu;0) and f(u;0) are defined as
 the conditional and marginal densities of T and U under

 Ho.]
 The specific proposal that we recommend, for the case

 of continuous data, is obtained by choosing U in (10) to be
 the conditional MLE of 0, given t(x) = t, defined as

 OcMLE(X) = argmaxf(xIt,0) = argmax f(t ) (13)

 We suppress 0cMLE and call the resulting p value simply

 the conditional predictive p value, denoted by Pcpred=
 Pcpred(c~MLE)~ Note that m(tL ) is unaffected by one-to-one

 transformations of u(x), so that any one-to-one transforma-

 tion of (13) is satisfactory as the choice of kcMLE
 Note that when T is conditionally independent of kcMLE

 and (T, OcMLE) are jointly sufficient, both of the foregoing
 proposals for p values agree; that is, Pppost = Pcpredc- This
 occurs in the following example from Meng (1994), which

 we use to exhibit the various p values that have been defined

 so far.

 Example 1. Assume that under the null, the Xi are

 iid N(O, o2), with u2 unknown. The statistic t(X) -

 IXI is chosen to measure departure from the model
 (which would be natural for detecting a discrepancy in

 the mean of the model). The various p values are given

 by

 p= Pr{IXI > lxobSl}, (14)

 with different distributions used to compute the probabil-
 ity. For the Bayesian p values, we utilize the usual non-

 informative prior for uJ2: 1r((J2) OC 1/(2. Finally, define
 S2 = E(Xi- _)2/

 Pplug Because X n N(0, u2/n) and I2 1/n >> xi -
 s + x2 is the MLE, it follows from (2) and (14) that

 Pplug 2 ( - /S + x ) (15)

 One obvious inadequacy with this p value is that

 Pplug -+ 2[1 - 1 (vr)], a positive constant, as
 lxobs/slbS ob oc. Thus, even with arbitrarily strong
 evidence against the null model, the p value will not
 go to 0 (for fixed n). For large n, this limiting con-
 stant will of course be small, so that it would not pose
 a practical problem. In practice, however, the num-
 ber of observations is often not large in comparison

 to the number of parameters, so that concerns of this

 type can be relevant. In any case, such behavior is in-
 dicative of a fundamental flaw in the procedure. (In

 this example, one could achieve results that are more

 satisfactory by plugging in Sobs rather than the MLE;
 indeed, this is related to the "conditional plug-in" p

 value, which, however, is shown in RVV 2000 to also
 have deficiencies.)

 psijr:A sufficient statistic for -2 iS V = =
 IIXI12. The distribution of X, given Vobs = |1Xobs II2
 is uniform on {x IIX 1 2 ' I xobs 112}1 so that (3) and
 (14) yield

 Psim = Pr ( I > Xobs I
 lXobsl lXobs J

 = Pr (IZ > lXobs )v (16)

 where Z has a uniform distribution on {z z l l 2 =1 }.
 Although this might appear to be difficult to compute,
 it is shown later (using Theorem 2) that p5im is exactly
 equal to Pppost and Pcpred, which in turn are equal to
 the classical p value for the problem given in (18); we

 found this result surprising.
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 Bayarri and Berger. P Values for Composite Null Models 1131

 Pprior The prior predictive p value cannot be computed
 for this example, because the prior distribution is im-

 proper.

 Ppost: The posterior density, 7r(o2Ixobs), is Ga-1(n/2,
 72(s2 + x2)/2), and the posterior predictive distribu-

 tion of X is mpost(x xobs) = tn(x 01, /n(sobs + Xobs));
 here Ga-1 and t?. denote the inverse gamma distribu-
 tion and the t distribution with n degrees of freedom.

 From (6) and (14), it follows that

 ppost =2 [i- Tn ?Xobs (17)
 [/ (Xobs + obs)

 where Tn represents the distribution function of the
 t distribution with n degrees of freedom. As could

 be expected, (17) is very similar to pplug, given in
 (15). Indeed, it has the similar inappropriate behav-

 ior that Ppost - 2[1 - YT7(vrn)j, a positive constant,
 as lxobs/sobS ob oo. For instance, when n = 4 this
 constant is .12, and the posterior predictive p value

 never drops below this constant, no matter how many

 standard deviations -obs iS from 0. The inadequacy of

 Ppost here (or of Pplug) can be directly traced to the
 double use of the data, in particular to the fact that

 Xobs is involved in computing both the posterior (or
 the MLE) and the tail area. Interestingly, the problem
 with Pplug is less severe than that with Ppost in that

 the limiting constant is smaller (.046 when n = 4, for
 instance).

 Pcprecd Computation shows that

 f (xlt; o-2) cc oc ((>)O- ((2) Kn-1)/21 exp - ns2

 which is maximized at &2MLE ns2/(n - 1). As ob-
 served earlier, it is equivalent to take S2 as the condi-

 tioning statistic. It is then easy to show that 7r(oX2is2)
 is Ga-1((n - 1)/2, ns2/2) and that m(XsobS) -
 t-l(X 0, 1/ -1)]Sobs ). The resulting conditional
 predictive p value is

 Pcpred -2 [i -~ ( ?1x-s1 (18)
 Sobs

 This is perfectly satisfactory and indeed equals the

 usual classical p value for the problem based on the

 usual one-sample t statistic, which is known to be uni-

 form under the null.

 Pppost: In this case T X is independent of &cMLE o S2
 (and they are clearly jointly sufficient), so that the par-
 tial posterior predictive p value equals the conditional

 predictive p value, Pcpred, in ( 8).

 It should be noted that Meng (1994) also considered use

 of the departure statistic t(x) := t-/sobs in the foregoing
 example, and with this statistic, the posterior predictive p
 value and the plug-in p value perform fine (being then equal
 to the other p values). Note, however, thlat in more complex
 problems, it may be quite difficult to find "appropriate" de-

 parture statistics for use with the posterior predictive or

 plug-in p values (RVV 2000).

 2.2 Motivation and Comparison

 2.2.1 Bayesian Motivationsfor pppost and Pcpred. The
 U-conditional posterior predictive p values appear to com-

 bine the positive features of both the prior predictive and

 the posterior predictive p values. First, they are based on the

 prior predictive m(x), which has natural Bayesian meaning;

 indeed, when 7r(O) is proper, m(tlu) is simply the condi-
 tional distribution of T given U arising from the prior pre-

 dictive m(x). Second, with appropriate choice of U, (10)

 can be made to primarily reflect surprise in the model, with

 the prior playing only a secondary role. Third, noninforma-

 tive priors can be used, as long as 7r(Olu) is proper. Finally,
 there is no double use of the data, because only part of the

 data (Uobs) is used to produce the posterior to eliminate 0,
 whereas another part (tobs) is used when computing the tail
 area.

 Of course, the key to the U-conditional predictive p value

 is a suitable choice of the conditioning statistic U. Differ-

 ent possible choices of U have been explored by Bayarri

 and Berger (1997). (See also Evans 1997, where the condi-

 tional predictive distribution was used to develop alternate

 measures of surprise, with U and T chosen to be separate

 subsamples of the data. A rather different possibility was

 given by the cross-validatory predictive distribution as de-

 scribed in Gelfand, Dey, and Chang 1992; see Carlin 1999

 and the rejoinder in Bayarri and Berger 1999 for more dis-

 cussion.) The intuition behind suitable choice of U is that

 one wants U to contain as much information about 0 as

 possible, so that 7r(0OIUbs) will effectively eliminate 0 (via
 integration), subject to the constraint that U should not in-

 volve T, as this could lead to a reduction in discrimina-

 tory power of the procedure. In Example 1, for instance,

 Ex>4/n would contain all information about cr2 (being a
 sufficient statistic under the presumed model), but does in-

 volve t(x) = Ix-. The obvious solution (used in Example
 1) is to define u(x) = (x - x)2/n, because this
 contains the information about cr2 that is independent of
 t(X).

 Investigations by Bayarri and Berger (1997) also suggest
 that u(x) should have the same dimension as 0. The sim-
 plest general algorithm that achieves these various aims,

 for the case of continuous data, is to define U to be the

 conditional MLE of 0, given t(x) = t, as defined in (13).
 [The situation of discrete data is considerably more dif-
 ficult; whereas 6CMLE in (13) is still typically well de-
 fined, it will not be suitable as a conditioning statistic if

 the resulting conditional sample space contains too few

 values.]
 While logically appealing, the conditional predictive p

 value, with the conditioning statistic 6cMLE chosen as in
 (13), can be difficult to compute. An attractive alternative

 is to directly use f (xlt; 0) [see (13)] to integrate out 0, rather
 than simply using it to define 6cMLE This leads to the partial
 posterior predictive p value, defined in (8) and (9), which is

 typically much easier to work with. Furthermore, the par-

 allel with (13) suggests that the partial posterior predictive

 p value will be very similar to the conditional predictive
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 p value. This is shown in our (continuous) examples and

 is further reinforced by RVV (2000), who show that Pcpred

 and Pppost are asymptotically equivalent.

 The foregoing Bayesian motivations may appear rather

 "loose," but history in other areas of statistics has shown

 that when sound Bayesian reasoning and noninformative

 priors are used to develop procedures, these procedures

 typically also have very desirable non-Bayesian properties.

 That this is so for Pcpred and Pppost is discussed in the next
 section.

 2.2.2 Frequentist Motivations and Comparisons. RVV

 (2000) show that Pcpred and Pppost are asymptotic frequen-
 tist p values; that is, their asymptotic distribution is U[O, 11
 for all 0. In this section we study whether this is so for

 small samples; we say that a p value is a frequentist p value
 for all 0 if it is U[O, 1] for all 0. We present an illustra-

 tive example and two relevant theorems, the first of which
 follows.

 Theorem 1. Let p(X) be any U-conditional predictive

 p value for a proper 7r(O), and consider it as a random vari-

 able with respect to the distribution f (x; 0). Assume that
 the distribution of p(X) does not depend on 0, and that the
 conditional distribution of T, given U, is absolutely con-

 tinuous. Then p(X) is a frequentist p value for all 0. The
 conclusion also holds for improper 7r(0) under condition
 (A.1) in the Appendix, which is in particular satisfied if U
 has a location or scale-parameter distribution and 7r(0) is

 the reference prior.

 Proof. Suppose that 7r(0) is proper. Then both

 the conditional predictive distribution for T, m(tlu) =
 f f (tIu; 0)r(0 u) dO, and the prior predictive for U, m(u) =
 f f (u; 0)7r(0) dO, are proper. Also, because p(X) is by def-
 inition a proper p value with respect to m(tlu), it follows
 that

 0.0 0.2 0.4 0.6 0.8 1.0

 Figre 1 Densitie of pug() ( E() and Ppos(X) (- - ?) nExml

 2, he n 2 Te uifrm enit is(U ploted fo refeene

 But because

 Prm' )(p(X) < a) = EgT(0)(Ef(x;0)[p(X) < a1])

 it follows that if p(X) has a distribution that does not de-

 pend on 0, then

 Prm(') (p(X) < ae) = E`(H) [c(a)] = c(a),

 where c(ae) is some function of ae. It is immediate that

 c(ae) = a and hence that p(X) is an exact p value. The

 proof for the improper case is given in the Appendix.

 An obvious situation in which Theorem 1 applies is when

 U can be taken to be a sufficient statistic for 0. In that case

 m(tlu) = f(tlu), and the U-conditional predictive p value
 equals the frequentist similar p value. Another application

 of Theorem 1 is to Pcpred (and Pppost) in Example 1. From
 (18), it is clear that their distributions do not depend on cr2,

 because the distribution of \/(n - 1)X/S is independent
 of uJ2. Also, -2MLE has a scale-parameter distribution, so
 it can be immediately concluded that Pcpred and Pppost are
 frequentist p values for all -2.

 In Example 1, Pplug and Ppost will not be frequen-

 tist p values, but the extent to which they deviate from
 uniformity must be studied numerically. We thus turn
 to a simpler situation where exact computations can be
 performed.

 Example 2. Assume that X1, X2... Xn is a random
 sample from the exponential(A) distribution. Let T = X(1)
 (which could be used to investigate the lower tail of the
 null distribution) and assume that the usual noninforma-
 tive prior 7r(A) = 1/A is to be used. In the following,

 X(1) < ... < X(n) denote the order statistics for
 the observations. Also, define S = En Xi and let Sobs
 be the sum of the observed xi. We derive the different p
 values and investigate their properties. The following fact,
 established in the Appendix, as used repeatedly:

 Pr (S < c) 1 -(1 nc)n. (19)

 Pplug Clearly, A = n/S and T - Ex(nA), so that

 -nP2tobs/sobs (20)

 That this is conditionally unsatisfactory can be seen by

 taking ntobs/sobs - 1, in which case the model would
 clearly be contraindicated, yet Pplug X e-n, a nonzero

 constant. To investigate whether Pplug is a frequentist
 p value for all A, an easy computation using (20) and
 (19) yields, for ae > e-n,

 Pr(pplug(X) < oa) Pr T >- lo )

 I + (21)

 Thus Ppiug(X) does not have a U[O, 11 distribution and
 is not a frequentist p value. Figure 1 graphs the den-

 sity corresponding to (21) when n = 2, to show the
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 Bayarri and Berger: P Values for Composite Null Models 1133

 substantial deviation from uniformity that can occur.

 Note, however, that Pplug (X) is an asymptotic frequen-

 tist p value. Indeed, for large n, (21) is approximately
 given by

 Pr(pplug(X) < a) a [1-- (log a ? 2 iog2 a)1

 which does go to a as n X oo.

 Psim Because S is sufficient, the distribution of X1,
 X2,.. ., Xn given s is uniform on the set {X
 n Xi = s}, and so

 Psimr Pr(T > tobsISobs) Pr (W() > nto)

 2ntobs (n

 Sobs

 where W(i) min(W1, W2, . . . , W7) and the Wi are
 iid U(O, 1). This will be seen to be equal to Pppost.

 Pprior The prior predictive p value cannot be computed
 for this example, because the prior distribution is im-
 proper.

 Ppost The posterior distribution of A is easily seen to be
 Ga(n, sobs), and the posterior predictive density of T
 is (n2/Sobs) [(sobs/(nt + Sobs))]n+l. The posterior pre-
 dictive p value can then be computed as

 Ppost = Pr pst(tIxobs)(T >tb)(1 + tobs-

 It can be seen that Ppost - 2-a, a nonzero constant,

 as ntobs/sobs X 1, which is not appropriate behav-
 ior. Moreover, the distribution of Ppost is not U[O, 1].
 Indeed, for a > 2-,

 Pr(ppost(X) < oa) = Pr T >- (I I)]

 = (2 -1/n)n-1. (22)

 The corresponding density function is graphed in Fig-

 ure 1 when n = 2, and is even further from unifor-
 mity than is the density corresponding to Pplug. Again,
 however, Ppost can be shown to be asymptotically

 U[O, 1].

 Pppost An easy computation shows that

 f(xlt; A) oc An-1 exp {-A ( xi-nt) }, (23)

 so that the partial posterior for A is

 A(n-2 e--) (Sobs-ntobs)
 mT(tIXobs \ tobs) = 1)(sOb - tobs)-1

 F(t + Sobs - ntobs)

 The partial posterior predictive p value can then be

 computed as

 Pppost - Pr (tIxobs\tobs) (T > tobs)

 ) -(n-i1)

 (i + ntobs
 Sobs - ntobs

 n-1

 = nt _ obs
 ( Sobs

 which is identical to the similar p value. It can be

 shown that Pppost - 0 as ntobs/Sobs X 1, so that
 there are no apparent conditional difficulties with the

 partial posterior predictive p value. It will also be seen

 that Pppost is a frequentist p value for all n.

 Pcpred Maximization of (23) over A yields AGMLE DC
 n 1 Xi - nX, = S - nT. It can be seen that
 X(2) - X(l) is independent of X(1), from which it

 follows directly that AGMLE is independent of T. As

 discussed in the paragraph preceeding Example 1, it

 follows that Pcpred =.Pppost. Note that the derivation
 of Pppost was considerably simpler than that of Pcpred-
 Finally, as in the argument leading to (19), it can be

 shown that Pr(ppp,st (X) < ae) does not depend on A.
 Also, AcMLE has a scale-parameter distribution, and
 so, by Theorem 1, Pcpred (and hence also Pppost and
 psim) is a frequentist p value. Notice that Theorem 1

 cannot be directly applied to Pppost.

 It is something of a curiosity that in both Examples 1 and

 2, Psim coincides with Pcpred and Pppost, especially because

 Psim and Pcpred are determined from distributions on com-
 pletely different (conditional) spaces. This is useful method-

 ologically for those who wish to use Pcpred or psim, because
 it is typically much easier to derive Pppost than either of
 the other two p values. The following theorem gives more

 general conditions under which this equivalence holds. (It
 is easy to see that Examples 1 and 2 both satisfy the con-
 ditions of the theorem.)

 Theorem 2. Suppose that f (x; 0) is a continuous density
 from the natural scale exponential family and that statistics
 T > 0 and U > 0 exist such that S = T + U is sufficient

 and

 f (t, U; 0) = k0'tau'--2 exp{-0(t + U)},

 for some constants k,y > -1, and ay < a - 1. Under the
 usual noninformative prior, wF(0) = 1/0, it will be the case
 that Pcpred, Pppost, and Psim are all equal.

 Proof. That Pcpred and Pppost are equal follows from
 direct calculation. To show their equality with Psim, first
 integrate f (t, U; 09) with respect to IF(O) =1/0, obtaining
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 Thus m(t uObs) = CtY(t+UObS)a, where c is the appropriate
 normalizing constant, and hence

 00 0? t-Y
 Pcpred= 1 m(tl uobs) dt bc (t + Uobs) dt. (24)

 An easy computation shows that the conditional density

 of T given S is

 fP(tls) = c t)a , for 0 < t < s,

 where c* is the appropriate normalizing constant. Hence

 Psim is given by

 poo R'Sobs

 Psim Itb f(t Sobs) dt = C* tO(Sobs - t) -2 dt.
 obs tbs

 Changing variables to t = (SobsW)/(W + Uobs), the latter
 integral reduces to that in (24), and the theorem follows.

 2.3 Computation

 Simulation methods are typically needed to compute the
 partial posterior predictive p value. These simulations will
 typically be only modestly more difficult than those in-
 volved in computation of either the prior predictive p value
 or the posterior predictive p value, providing that f (tobs; 0)
 is available in closed form.

 Noting that the partial posterior predictive p value can be
 rewritten as

 Pppost J Pr(T > tobs; 0)w(O|Xobs \ tobs) dO,

 an obvious strategy is to repeatedly generate 0 from

 ir(0 Xobs \ tobs) and then T from f(t; 0) [which could of
 course be done by simply generating X from f(x; 0) and
 computing t(X)], estimating Pppost by the fraction of gen-
 erated T that are greater than tobs.

 There are various possibilities for generating from

 w (0OXobs \ tobs). If generation from the full posterior
 wF(OIxobs) is easy, then a natural possibility is to use the
 following simple Metropolis chain: use wF(OIxobs) as the
 probing distribution to obtain a candidate 0*, and then

 move from the current 0 to the candidate with probability
 min{1, f(tobs; 0)f (tobs; 0 )}.

 In some sense, a "bad" discrepancy statistic T is one for

 which f(tobs; 0) is highly variable in 0. (Casually chosen T
 for model checking will often have this property.) Whereas
 such T will not yield good p values by standard methods,
 the results in this article (and in RVV 2000) indicate that
 the new conditional p values will still be quite satisfactory.
 The price to be paid, however, is that computation of the

 new p values can be more difficult with such T, because

 wF(Ojxobs) may no longer be a good probing distribution. A
 slight modification of the foregoing Metropolis chain can
 then be considerably more efficient: generate U, a uniform
 random variable on (0, 1); generate 0' from wr(0 Xobs), and

 choose the candidate 0* =0' + U(O - OCMLE), where 0 and

 0cMLE are the MLE and the conditional MLE [see (13)] of
 0. Then, move from the current 0 =00 + U0(0 - CML,E) to

 the candidate 0* with probability

 min 1 f(tob,; 0) wF(0*) 7(00) f(xobs; 0*) f(x0b,; 00)
 f f(tob,; 0*) 7(0) -F(O/) f (X,b,; 0) f (X,b,; 0 )J

 Alternatives to such direct Monte Carlo computation of

 Pppost include importance sampling schemes. For instance,
 if a (possibly dependent) sample {Oj, j = 1..., m} from
 7w(0 xOb,) were available, then one could estimate Pppost by

 z; IPr(T > t0b,; 0j)/f (tobs; Oj)
 Pppost= Em =1 I If (tobs; fj )

 [This would work because f(xobs; 0) is typically consider-
 ably more concentrated than f(tobs; 0).]

 When f(tobs; 0) is not available in closed form, it must
 be estimated, possibly through some type of kernel esti-

 mate; note that T typically is a one-dimensional statistic,
 and estimation of a one-dimensional density at a point usu-
 ally is not excessively difficult. Of course, this estimation

 must be done in conjunction with the Metropolis or impor-

 tance sampling schemes mentioned earlier, and efficiency

 might improve if one keeps only widely spaced (i.e., ap-
 proximately independent) 0.

 Computing Pcprecd(u) is usually considerably more dif-
 ficult, unless the densities on the left side or the right
 side of (11) are available in closed form. Various Gibbs
 and Metropolis-Hasting schemes for its computation were
 given by Bayarri and Berger (1999) and are not repeated

 here. The computational difficulty of Pcpred(u) (see also
 Pauler 1999) is the main reason why we recommend Pppost
 for routine use.

 3. COMPARISONS IN THE NORMAL LINEAR MODEL

 In this section we derive the various p values for the nor-

 mal linear model and give characterizations of their degree
 of uniformity (frequentist sense). This section was moti-
 vated by RVV (2000), who derive corresponding results un-
 der assumptions that yield asymptotic normality. Seeing the
 results in the finite-sample setting (under normality) should
 help alleviate any concerns about "asymptopia." Note that

 in this section we do not attempt to distinguish between the
 MLE and its value at the observed data; both are denoted
 by 0.

 Let Y = (Y1, Y2,.. , Yn)t be the n x 1 vector of response
 variables, let 0 = (01,02,... ,Ok)t be the k x 1 vector of
 regression coefficients, let V be a full-rank n x k matrix of

 covariables, and let E be an n x 1 vector of errors. Assume
 that we are testing

 Ho Y =VO + E, Nn(0, cr2l), cO2 known. (25)

 Consider a linear departure statistic T wtY, with given

 w= (wl,w2,) . . ,wn)t. It follows from (25) that

 TIO N(wtV0 cr2 1w 12). (26)

 Also, with the usual noninformative prior, wr(O) =1,

 the posterior distribution, wr(O y), is Nk(O ,s2Vt)-)

 where 0 =(Vt V)l1Vty is the usual least squares estimate.

This content downloaded from 
�����������71.65.170.191 on Mon, 11 Sep 2023 00:59:12 +00:00������������ 

All use subject to https://about.jstor.org/terms



 Bayarri and Berger: P Values for Composite Null Models 1135

 3.1 Plug-In p Value

 It follows from (26) that Pplug is given by

 Pplug = Prf (t;) (T > tobs) 1 -- (tO lwltV)-

 To study the distribution of Pplug (Y) (to assess its frequen-
 tist uniformity), note that

 T - wtV0 N(wtBVO, oc2wtBBtw), (27)

 where B = I-V(VtV)-lVt. Because BV = 0 and BBt

 B, it follows that

 Ppug(Y) 1- ( w z) (28)

 where Z N(0, 1). Thus pplug(Y) will have a U[0, 11 distri-
 bution only if wtBw/HlwH12 = 1, which in turn can happen
 only if Vtw = 0. Although the latter will be satisfied by
 common choices of T, such as a linear function of the vec-

 tor of residuals, it clearly need not hold in general. When it

 does not hold, wtBw/HlwH12 will be smaller than 1, so that
 Pplug will be conservative.

 3.2 Posterior Predictive p Value

 The posterior predictive distribution of T, given Yobs is

 N(wtVO, cr2WtCw), where C = I + V(VtV)-lVt. It fol-
 lows that the posterior predictive p value is given by

 ppost = PrmPost (t IYobs) (T > tobs) = 1- (Lobs_- W ) .
 0- \wtCw/

 When considered as a random p value and using (27), Ppost
 can be expressed as

 PPt () =I -( wtCw Z) (29)

 Again, this will be U[0, 11 only if Vtw = 0. Otherwise,
 wtCw will be larger than IIwI 2 and, comparing (28) and
 (29), Ppost will then be even more conservative than Pplug.
 This observation was first made in the asymptotic setting
 by Robins (1999) and RVV (2000).

 3.3 Partial Posterior Predictive p Value

 Calculation yields

 f(Y tobs; 0) xc exp { 2 [(0- O)tVtV(0 -0)

 (wtvo - T)t( -w 12) (wtV -T)] (30)

 Because the partial posterior distribution WF(OlYobs \ tobs) is
 proportional to (30), expanding the quadratic forms in (30)
 and rearranging terms yields

 7(OjYobs \ Lobs) Nk(0 Uobs, '.2V (31)

 where U =(VtHV)-lVtHY, E (VtHV)-1, H=
 [I - (wwt/flwHl2)1, and the right side of (31) denotes the
 k-variate normal density in 0 with the given mean and co-

 variance matrix. From (26) and (31), it follows that the par-

 tial predictive distribution of T is given by

 T Yobs \ tobs N(wtVuobs,, u2wt[I + VEVt1w),

 so that the partial posterior predictive p value is

 Pppost Pr M(tIYobs\tobs) (T > tobs)

 = 1-b ( tobs-WtVUobs)

 To study the distribution of Pppost(Y), note that

 T - wtVUIO - N(wtDVO, o-2wtDDtw),

 where D = I - V(VtHV)-lVtH and H is as in (31).

 Algebra shows that wtDV 0 and wtDDtw = wt[I +

 VEVt]w, so that pppost (Y) - 1-q(Z), where Z N(0, 1).
 Thus Pppost is a valid frequentist p value.

 3.4 Conditional Predictive p Value

 It can easily be seen from (30) and (31) that the U max-
 imizing (30) is precisely the statistic U given in (31); that
 is, U = (VtHV)-1VtHY. Because T and U have a joint
 (k + 1)-variate normal distribution such that cov(T, U) =
 wtHV(VtHV)-1 = 0, they are independent. It follows

 that Pcpred equals Pppost, and hence it is also a valid fre-
 quentist p value.

 4. DISCRETE SAMPLE SPACES

 For discrete sample spaces, the most common classical

 approach to defining p values is to condition on a statistic U

 such that f(xIu; 0) does not depend on 0. The Fisher exact
 test is the prototypical example that we consider here. Note

 that conditioning on any U can severely constrain the sam-

 ple space, resulting in serious conservatism of the resulting

 p value (because there may then be very few possible ob-
 servations in the "tail" of the departure statistic, T). We see
 that Pppost can substantially overcome this difficulty. [We
 do not consider Pcpred, because the choice of the condi-
 tioning statistic in (13) typically will not work in discrete
 problems, and because any conditional p value can fall prey

 to the same difficulty mentioned earlier.]

 We specifically consider the problem of testing homo-
 geneity and independence in 2 x 2 contingency tables, com-

 paring the similar p value (which is the Fisher exact test) and
 the partial posterior predictive p value. Many other p values
 for contingency tables have been proposed (a nice survey of
 proposed tests was given in Agresti 1992; see also Hwang

 and Yang 1997), and many of these perform considerably
 better than the Fisher exact test. Our attitude here is not that

 of seeking to determine an optimal p value for these situ-
 ations, but rather to see if straightforward implementation

 of Pppost can offer significant gains. (Recall that we hope to
 see Pppost used in situations of considerable complexity, in

 which there is little hope of determining optimal p values;

 in judging the effectiveness of Pppost, however, it is useful
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 to consider moderately difficult situations, such as this, to
 see whether an easy implementation works.)

 Consider the following 2 x 2 contingency table:

 A1 A2 Totals

 B1 XII X12 X1+
 B2 X21 X22 X2+

 Totals X+1 X+2 n

 We analyze two common scenarios involving such tables.

 Case 1. One of the margins, say X+1 = nl, X+2 = n2,
 is fixed by the design, so that X1I and X12 can be viewed as
 independent binomial random variables. We want to study
 the null model of homogeneity, that the two binomial dis-

 tributions have the same success probability, 0.

 Case 2. The design fixes only the overall sample size,
 n. A common null model is that classification by A and B
 is independent, so that the probability of each cell is the
 product of the corresponding marginal probabilities.

 For convenience of notation in this section, we denote an

 observed value of X.. by a superscript "o"; that is, xO.

 4.1 Case 1: Test of Homogeneity

 Here the null model is

 f(xll, x12;0) - ( N ) ( n2 ) Xll?Xl2(lO0)nXll-Xl2

 xii = 0, ... , ni, x12 = 0, ... , n2- (32)

 The Fisher exact test conditions on the other marginal

 total, say X1+. It is common in textbooks to then take
 the test statistic (in the conditional problem) to be T =

 X1,. An easy computation shows that the (one-tailed) p
 value corresponding to the Fisher exact test (Pfet) is given
 by

 min{fx+ ,nl }

 Pfet S f(jlx01+)
 j=tobs

 min{fxs,o } }

 X, (ni n2 )/(n)
 j=tobs

 Unconditionally, T - X1, is not a particularly sen-
 sible statistic for measuring departure from homogene-
 ity. Indeed, Suissa and Shuster (1985) proposed a sensi-
 ble unconditional T for this particular problem. In illus-
 trating Pppost, however, we first study what happens if one

 naively "follows the textbooks" and chooses T = XI,, even
 though this is not sensible unconditionally. (Our point is
 to show that Pppost behaves admirably even with a simple,
 but rather inappropriate, choice of T.) Then we consider a
 choice of T that is more reasonable from an unconditional

 perspective.

 Choosing the constant prior ir(0) =1, an easy com-
 putation shows that the partial posterior distribution is

 beta(x12 + 1, n2 - x12 + 1) and

 ni

 Pppost T m(t Xobs \ tobs)
 j=tobs

 n, n2 + 1Kni n2 A/K n A
 -t~ n+1(V j)(V X12 VX12+)

 j=tobs

 Incidentally, it can be shown in this problem (for the given

 choice of T) that Pcpred = Pppost; this is thus a discrete
 situation in which conditioning as in (13) does not unduly

 restrict the sample space.

 A more sensible unconditional choice of the discrepancy

 statistic is T = [(1/ni)Xii - (1/n2)X22] (because the null
 model is that the two binomial populations have the same
 success probability). The partial posterior predictive p value
 for this choice does not admit a simple closed-form expres-

 sion but can be readily computed numerically.

 Example 3. As a rather extreme test case, consider n1

 n2 = 3. Here conditioning on x1+ severely restricts the
 support of the distribution of Pfet, which reduces to {.05,

 .2, .5, .8, .95, 1}. The supports of the distributions of Pppost,
 for either choice of T, are considerably richer and include
 more values closer to 0 and 1.

 Figure 2 gives the distribution functions of pfet(X) and
 Pppost(X) (for both choices of T) at two different values
 of 0. Recall that the goal is to have p values with close to

 uniform distributions, and Pppost clearly fares much better
 in this regard (the straight dotted lines being the unattain-

 able uniform ideal). As expected, the Fisher exact test is
 very conservative, which translates into a severe lack of
 discriminatory power.

 Note that Pppost seems to perform somewhat better with

 the "sensible" discrepancy statistic T = [(1/ni)Xii -

 (1/n2)X22] than with T = X1i, in the sense that it then has
 a distribution somewhat closer to uniform in the most inter-

 esting region of small values of p. However, Pppost seems to
 be quite satisfactory (and much better than the Fisher exact

 test), even when the intuitively unsuitable T = X1l is used.
 Various other 0 were also considered. The distribution

 of Pppost for the "sensible" choice of T is remarkably sta-
 ble and performs very well for all values of 0. The other

 two p values (Pfet and Pppost with T = X1l) were exces-
 sively conservative for small 0, although Pppost began to

 perform noticeably better even for values of 0 as small
 as .2. For large values of 0,Pfet was again very conserva-
 tive, whereas Pppost performed remarkably well, unless 0
 was very large; we discuss this latter situation more fully
 later.

 4.2 Case 2: Test of Independence

 Referring to the contingency table with fixed n and defin-

 ing 0 = Pr(Al) and ( = Pr(Bj), the null model under inde-
 pendence of classification can be expressed as
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 0 =0.4 0 =0.8

 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 p-fet p-fet

 (a) (b)

 o=0.4 0 0.8

 o 0

 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 p-ppot, =1 p-fpoet,=1

 (a) (b)

 0=0.4 0=0.8

 U- / r,

 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 p-ppost, T =X1 X12 p-ppost, T =X1 X12

 (c) (d)

 o 0

 o ~~~~~~~~~~~~~~~0

 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 p-ppost, T Xli1-X p-ppost, T Xl1 1 l

 (e) (d)

 Figure 2. Distributions of pfet (X) [(a) and (b)]; Pppost (X) with T = Xi 1 [(c) and (d)] and T= XI1 1-X12 [(e) and (f)] for 0= .4 [(a), (c), and (e)]
 and 0 = .8 [(b), (d), and (f)] in Example 3.

 Here the Fisher exact test conditions on both margins, and
 again the "textbook" conditional departure statistic is typi-
 cally chosen to be T = X1l. The ensuing conditional den-
 sity of T is

 f(tlx'l+, 4) = ( +)(X +t)/(x )'

 which produces the same p value as in the test for ho-

 mogeneity. (Note that here, xO+ plays the role of n1 in
 Case 1.)

 In deriving Pppost, we restrict attention to the statistic
 T = X11, even though this is not particularly sensible from

 an unconditional perspective. We do this in part so that it
 cannot be argued that we obtain better results than Pfet by

 choice of a better T and, in part, to indicate the quality of

 Pppost even with an inferior choice of T.
 Using uniform independent priors for 0 and (, the partial

 posterior, ir(O, xIobs\tobs), is proportional to f(x tobs; 0, (),
 and Pppost can most conveniently be expressed as

 1 1 ~~~~n

 Pppost j j7 (0 |Xobs \ tobs) E
 t-t.b tobs

 binomial(t ri, 04) dO dd, (33)
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 where

 7(0, (|Xobs \ tobs)

 a 0 21 (I - O)XO+2(12 (1 (I - x (1 - ( )-(0i-tabs) (34)

 (Note that for this case, Pppost and Pcpred differ, and indeed
 the latter can be problematical because of possibly restric-
 tive conditioning.)

 To compute Pppost, we use importance sampling based on
 the importance function

 1
 -U(010, 1)beta(( X42 + 1, x2?2 + 1)
 2

 + I beta(Olx?l + 1, x?2 + 1)U(410, 1). (35) 2 2 2

 Not only is this an easy importance function to use in terms

 of random variable generation, but it also is highly efficient

 computationally, for even very large n. The reasons for this

 are given in the Appendix, which also presents other com-

 putational details.

 0=0.6, t=0.5 0=0.6, t=0.5

 o 0

 0 0

 oi 0

 N~~~~~~~~~~~~~~~

 9 -

 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 p-fet p-ppost

 (a) (b)

 0=0.3, t=0.9 0=0.3, t=0.9

 9 0

 0~~~~

 0 O

 oi 0

 o N

 9 -

 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 p-fet p-ppost

 (c) (d)

 0 0[9( 0.9 0(0.9, a(0.9

 9 9

 o 0

 o 6

 o N
 o 0

 0 0

 0.0 0.2 0.4 0.6 0,8 1.0 0.0 0.2 0.4 0.6 0.8 1,0

 p-fet p.ppost

 (e) (f)

 Figure 3. Distributions of pfet (X) [(a), (c), and (e)] and pppost (X) [(b), (d), and (f)] in Example 4 for (0;~ (6 .5) [(a) and (b)] (0; )=(3, .9)
 f'c,) and (d)] and (0; ~) = ( 9, .9) [(e) and (f)].
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 Example 4. We again consider a rather extreme case,

 namely n = 5. It can be shown that the support of pfet (X)
 is limited to {.1, .2, .3, .4, .6, .7, .8, .9}, whereas the support

 of Pppost (X) is noticeably richer. The distribution functions
 of these two p values are given in Figure 3 for various

 values of the parameters. For all but very large values of the

 parameters, Pppost seems considerably more uniform than

 Pfet

 Further investigations revealed that when both 0 and (

 are small, either p value is quite conservative, with Pppost

 the less conservative. Both p values perform at their best

 for 0, .5, with Pppost performing much better. When one
 of 0 or ( is small and the other is large, Pfet is again very

 conservative, whereas Pppost performs remarkably well.

 Both Pfet and Pppost are probably asymptotic frequentist

 p values, and it is of interest to ask how large n must be

 for their distributions to be approximately uniform. This

 is especially interesting for smaller values of p, which are

 typically of most interest when n is large. An illustrative

 such feature is the sample size needed for the distribution

 function of a p value at .05 to be within 20% of .05 (the

 value under the desired uniformity). When (0, () (.6, .5),

 this obtains for Pfet only when nr 500; in contrast, this
 occurs for Pppost when nr 10. When (O, ) - (. 3, .9),pfet
 requires n 1200, whereas Pppost needs only n 110.

 The apparent breakdown of both Pfet and Pppost for large

 values of (0, () [such as (.9, .9) in Fig. 3] deserves special

 discussion. First, note that Pfet becomes almost hopelessly

 conservative, never stating that the data is incompatible with

 the model. In contrast, Pppost is markedly anticonservative

 for this situation. At a very intuitive level, the behavior of

 Pppost seems more sensible. After all, we declared large val-
 ues of T to be evidence against the null model, and when

 (0, () are both large, the values of T = X1l clearly will typ-
 ically be very large; Pppost reacts to this with ready "rejec-

 tion" of the null model, whereas Pfet ignores all but incred-

 ibly large T. This anticonservative behavior of Pppost arises

 because a very large value of T = X11 contains a great

 deal of information about the parameters, but relatively lit-

 tle information about deviance from the model. This is one

 negative consequence of using an inferior choice of T.

 The most extreme example of an inappropriate choice of

 T is a sufficient statistic for the parameter; such a statistic is

 nearly useless for model checking. We examine this further

 in a very simple example, so as to better understand the

 nature of Pppost in such a situation.

 Examnple 5. Assume that the null model is Xi
 Bernoulli(0),i 1,.. .,n, and that T = EXi, a suffi-
 cient statistic. Here m(tlu) = m(tlxobs \ tobs) = rn(t) -
 1/(n + 1) for t = 0, ... , n, and Pppost = 1- tobs/(n + 1).
 For large n, the distribution of Pppost is approximately

 N(1 - 0, 0(1 - 0)/n), which concentrates tightly around

 1 - 0. Thus when 0 is large, the distribution function of

 Pppost jumps immediately, giving rise to anticonservative p
 values; in contrast, for small 0, the situation reverses, and

 Pppost is conservative. Figure 4 shows the resulting distri-
 bution functions for three values of 0 when n = 100.

 Of course, this behavior of Pppost is entirely natural ac-

 cording to Bayesian intuition; large values of T are essen-
 tially equivalent to large values of 0, and as such are de-

 clared to be "surprising." As another argument, note that

 Pppost is equivalent to Pprior here, and choosing T to be
 sufficient is effectively stating that we will also allow its

 presence in the tail of the prior to discredit the model.

 In contrast, the distributions of both Pplug and Ppost can

 be seen to concentrate tightly about 1/2 when n is large,
 for any value of 0. (That Ppost, when it differs from unifor-

 mity, does so by concentrating closer to 1/2 was discussed
 in Meng 1994; see also Rubin 1996.) This is illustrated in
 Figure 4 for Pplug when n = 100. Thus, unlike Pppost which

 provides some kind of information, Pplug and Ppost provide
 completely useless answers here. (Of course, non-Bayesians

 may argue that it is better to infer nothing than to in effect
 base a conclusion on the prior; but recall that in the con-
 text we are considering, this means essentially refusing to

 consider alternatives to the null model, at least when T is
 chosen poorly.)

 As a final comment concerning this issue, recall that re-
 quiring uniformity of p values for all values of 0 might

 Dlo ct4 oZ

 (0a (b)

 LL 4L

 o 0~~~~~~~~~~~~~~~~~~~~~~~~' e=0.9 e=o.5 e=0.2

 -- e0.5,o0.2 e=0.9 C1-

 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 p-plug p-ppost

 (a) (b)

 Figure 4. Distributions of pplug (X) (a) and pppost (X) (b) in Example 5 for 0= .2, .5, .9 and n = 100.
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 well be too restrictive for a Bayesian (and also possibly

 for a frequentist). The natural (Bayesian) requirement (see

 Meng 1994) is to require a p value to be uniform under the

 prior predictive distribution. Because in this example, the

 partial posterior predictive reduces to the prior predictive,

 it follows that Pppost is indeed a p value for a Bayesian.

 (The "average" of all the distribution functions of Pppost in

 Fig. 4 is uniform.) In contrast, no Bayesian averages of the

 distribution functions of Pplug (or ppost) can be uniform. Of
 course, the Bayesian reasoning in this example is facilitated

 by the fact that the noninformative prior is actually proper,

 but related arguments involving averages with respect to

 classes of priors probably can be made for the improper

 case; we do not pursue this here.

 When considering the choice of T in discrete situations,

 this issue of sufficiency can arise in subtle ways. In Exam-

 ple 3, for instance, consider T = [(1/ni)XII - (1/n2)X22]
 when nr and n2 are different prime numbers. From a given

 nonzero value of T, it is then clear that X1I and X22 can be
 completely reconstructed. In this situation, T thus is nearly
 sufficient, and its use would encounter the aforementioned

 difficulties. (In contrast, when nr = n2, this problem with
 T does not arise.) Such "technical" near-sufficiency of T in

 discrete settings can be eliminated by the simple device of
 replacing T by a binned version, T*, with the bin size cho-

 sen so that each value of T* corresponds to several sample

 points.

 5. CONCLUSIONS

 Our comparisons have not included Pprior, because this
 cannot typically be used with noninformative priors. Also,

 Psim is just a version of a conditional predictive p value,
 obtained by choosing the conditioning statistic U to be a
 sufficient statistic (when available). Indeed, in all of our
 continuous examples it happened that Psim was equal to

 Pcpred, although this certainly is not true in general. For
 those wishing to use Psim, this equality is a fortunate oc-

 currence when it obtains (see Theorem 3), because Pcpred
 is typically much easier to compute directly in those situa-
 tions than Psim. The following discussion is thus limited to
 the other four p values.

 A surprising observation in our examples (first discussed
 in Robins 1999) is that Pplug seems superior to Ppost, in
 the sense that it is closer to being a frequentist p value;
 in particular, it is less conservative. This would seem to

 contradict the common Bayesian intuition that it is better
 to account for parameter uncertainty by using a posterior

 than by simply replacing 0 by 0. The explanation is that

 Ppost does not account for parameter uncertainty in a le-
 gitimate Bayesian way, because it involves a double use
 of the data. (Indeed, the original motivation for Pcpred and

 Pppost was precisely to account for parameter uncertainty
 in a legitimate Bayesian fashion.) We have considered only
 a few situations here, but, together with the similar asymp-
 totic conclusion of RVV (2000), it would seem that Pplug

 should be preferred to Ppost in practice. This is especially

 so because Pplug is typically easier to compute than Ppost-
 (In some situations in which Bayesian analysis is being per-

 formed via MCMC, a posterior sample of 0's might be more

 readily available than an MLE, but one could then plug in,

 say, a posterior mean for 0 rather than the MLE.) At the

 very least, our observations here and those of RVV (2000)

 indicate that it cannot simply be assumed that Ppost is better

 than Pplug, as has typically been the case in the literature. It
 should be noted, however, that posterior predictive p values

 are also commonly used today with discrepancy statistics

 that depend on 0, as well as on x, and there are currently

 no alternatives to their use in such situations (although see

 RVV 2000).

 In all our continuous examples, Pplug performed worse

 in the frequentist sense than either Pppost or Pcpred. This

 again supports the asymptotic conclusions of RVV (2000)

 and suggests that the latter p values, if available, are to be

 preferred in practice. Computation is clearly an issue, how-

 ever, in that Pplug is typically easier to compute than the new

 p values, especially Pcpred (see also Pauler 1999). Compu-

 tation of Pppost is usually not difficult if f (t; 0) is available

 in closed form, and we would definitely recommend its use

 in that case.

 The (asymptotic) superiority of Pppost and Pcpred arises
 when the departure statistic T is not appropriately "cen-

 tered," as discussed by RVV (2000). In a sense, the new
 p values can be viewed as automatically "centering" a de-

 parture statistic T, which can be a considerable simplifica-

 tion in practice, avoiding the need for asymptotics or clever
 statistical intuition. Indeed, in model checking one often

 wishes to try a series of rather generic possible discrepancy

 statistics T, and having an automatic centering mechanism
 is a considerable simplification.

 On a more speculative note, it is quite plausible that use

 of Pppost and Pcpred can result in an improvement (over,
 say, pplug) with even "centered" choices of T (as long as
 the distribution of T still depends on 0 to some extent).
 This could be improvement in finite-sample performance

 or in higher-order asymptotic terms.
 The situation involving discrete distributions is more

 complex, but the gains through use of the new p values,

 especially Pppost can be quite dramatic. Discreteness of the
 sample space can cause common p values, such as those
 from the Fisher exact test, to be very conservative in small

 samples, whereas the partial posterior p value is rather re-
 markably uniform, especially if a reasonable discrepancy
 statistic T is used.

 APPENDIX: TECHNICAL AND
 COMPUTATIONAL DETAILS

 Details for Theorem 1

 Suppose that ir(O) is improper but that there exists a sequence
 of increasing compact sets Ek C E such that Uk>lek = E, 0 <

 mk = fe kr(0) dO < oo, O < m(u) f f0 f (u; 0)7r(0) dO < oo,
 and

 lrn mk f (mk(u))2d1 (Al)
 k-oo J m(u)

 where mk(u) =(f0e f (u; Ojw(O) dO)/mk. Then the conclusion of
 Theorem 1 holds.

This content downloaded from 
�����������71.65.170.191 on Mon, 11 Sep 2023 00:59:12 +00:00������������ 

All use subject to https://about.jstor.org/terms



 Bayarri and Berger: P Values for Composite Null Models 1141

 Proof. Define h(u, 0) = Pr(p(X) < alu; 0). From the defini-
 tion of Pcpred(u), it follows that

 I h(u, 0)ix(Olu) dO = a. (A.2)

 By the assumption that p(X) has a distribution that does not de-

 pend on 0, it follows that for some constant c,

 I h(u, O)f (u; 0) du = E[Pr(p(X) < ca); 0] = c. (A.3)

 It is immediate from (A.2) and (A.3) that

 I h(u, 0)7r(0 u)mk (u) du d0o= (A.4)

 and

 -l. Jh(u; 0)f (u;0)lr(0)lk ddu = c. (A.5)

 To prove that a = c, completing the proof, we need only show
 that the difference of the left sides of (A.4) and (A.5) goes to 0
 as k -+ oo. Breaking the left side of (A.4) into integrals over Ock
 and E)k, and using the fact that

 mk(U) = M (U) J (u; 0*)x(*) dO*1

 in the second of these integrals, the difference of the left sides of

 (A.4) and (A.5) can be written

 h(u, 0)lr(OIu)mk(u) dO du - f h(u, 0) r(OIu)

 x f (u; 0*)r(O*) dO*1 dO du.
 ok

 Because h(u, 0) < 1, algebra shows that each of these terms is
 bounded in absolute value by

 1r(OIu)mk (u) d0du J - 7r(OIu)Tk(u) d du
 k k

 I JMk (M(mk (u)) du
 m(u)

 which goes to 0 by (A. 1) and completes the proof.

 Verification of (A.1) When U has a Location or Scale Dis-
 tribution. For convenience, we assume that U has a location
 distribution with range R and that E) = R. Other cases can be
 handled similarly. Write f(u; 0) = g(u - 0), let G(.) denote
 the cdf corresponding to g( ), and choose E)k (-k, k). Then

 m(u) f g(u - 0) d0 = 1, mk k M()d = 2k, mk(U)

 (1/2k) f (kk g(u-0) dO = (1/2k) [G(u + k) - G(u - k)], and (A. 1)
 becomes

 lim 2k J (mk(U))2du = 1. (A.6)
 k-ooo

 Note first that 2kmk(u) = [G(u + k) - G(u - k)] < 1, so that
 (A.6) is trivially bounded above by 1. To establish a suitable lower
 bound, note that [G(log k) - G(- log k)] > (1 - E) for any given
 E > 0 and sufficiently large k, so that

 2k1 ( 2k- logk
 2k j (mk(2)) du >l2kk [G(u + k) -G(u -k)]2 du

 > (1-?)2 2(k-l k

 Because E was arbitrary, (A.6) is clearly satisfied.

 Verification of (19)

 Lemma A.]. Let W = (WI, W2,.. ., W,) be a random vector
 with uniform distribution on the simplex Ei W 1, and let
 W(i) = min{Wi}. Then Pr(W(l) < c) = 1-(1 -( c)n.

 Proof. We give a geometric argument. The probability to be
 computed is

 Pr(W(l) < c) 1-Pr(all Wi > c) = 1-q. (A.7)

 Note that the conditional distribution of W on the set {W: Wj >
 c for all i} is also uniform, and that this set is itself a simplex of the

 same shape as the original simplex but with "corners" (c, . .. c, 1-

 (n-1I)c), (c, . .., 1- (n-1I)c, c),. ... (I1-(n -1)c,.... ., c, c). The
 edges of the original simplex have length V"-, whereas those of
 the smaller simplex have length V2_(1 - nc). It follows that q in
 (A.7) is given by

 (.1nc) n (1I Cn

 and the lemma follows.

 To establish (19), note that

 Pr < c) = Ef(s;A)Prf(tIS;A) (T I

 But given s, the distribution of XI, X2,.. , Xn is uniform on the
 set {X : >in Xi = s}. Defining Wi Xi/s, the conditions
 of Lemma A. 1 clearly apply, with W(i) = T/s, and the result
 follows.

 Computation of Pppost for Independence in Contingency Tables
 From (33) and (34), it is clear that a Monte Carlo importance

 sampling approximation to pppost in (33) is given by

 Li- [I 13(t,b, - 1 ; n, Oi (i)
 X 1r (0i, v i I X,b, \ t,b,) /h (0i, (i)

 Pppost L j (0i, (iIXobs \ tobs)/h(Oi (i)

 where 13(x; n, ) is the distribution function at x of the
 Bi(n, o) distribution, h(O, () is some importance function, and

 (01, 41), (02, v2), v *. , (OL, (L) are L random draws from h (.).
 Importance functions that have a bounded importance ratio,

 ir(0i, i IXobs \ tobs)/h(0i, i), and that reasonably approximate the
 desired distribution are useful for several reasons. First, conver-

 gence is typically rapid. Second, an explicit formula for the Monte
 Carlo variance is then available. Third, the scheme can be read-
 ily adapted, via acceptance-rejection, to generate an actual sample

 from the partial posterior, if desired. The importance function in

 (35) can be seen to have these properties. In particular, the impor-
 tance ratio can be computed to be

 W(O, cJXobs \ tobs)

 h(O, ()

 _<Cl (1 04)
 (1O)-x O-)xl I -~x 2 0 21 (I _)n21 221 -)21

 C2 nx(1- )A-1
 _ ___ 0 _

 2 (1- O)X124 2(1 - )nx11 12 v

 where

 c - (-x -x2i + 2) 1l -(7 +rr 1)(> +arfo 1)l

This content downloaded from 
�����������71.65.170.191 on Mon, 11 Sep 2023 00:59:12 +00:00������������ 

All use subject to https://about.jstor.org/terms



 1142 Journal of the American Statistical Association, December 2000

 and

 -(n- x,- X2 + 2) ce~~~ =
 C2 F(X21 + 1)r(X22 + 1)

 It is straightforward to show that this is bounded by 2/(cl + c2),
 using the inequalities 0(1 - () < (1 - O) and (1 - 0) < (1 - 04)
 judiciously. This importance function works well even for very
 large values of n and extreme values of 0 and (.

 [Received December 1998. Revised November 1999.]
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